SPMシミュレータDFTBソルバ用計算パラメータ・データベース構築

ー般に流通しているDFTBソルバでは、通常、原子間相互作用パラメータを提供しません っ方、

Advanced Algorithm & Systemsでは、SPMシミュレータのDFTBソルバにおいて、原 子間相互作用パラメータを、[区分1]:12元素、[区分2]:27元素、[区分3]:69元素(平成28 年9月完成)の条件でご提供する方針です

区分1:12元素 H, C, N, O, P, Al, Si, Ti, Ru, W, Pt, Au

区分2:27元素 S, F, Cl, Br, I, Ge, Ga, As, Na, Ag, Bi, Mg, Cu, Li, B

区分3:69元素

遷移金属	V, (Cr, Mn,	Fe,	Co , 1	Ni, Zr,	Nb,	Mo,	Tc,	Re,	Rh,	Pd,	Ir, Y	l, Sc
------	------	---------	-----	---------------	---------	-----	-----	-----	-----	-----	-----	-------	-------

ランタノイド系 La, Ce, Gd, Tb, Dy, Ho, Er, Tm, Yb

半金属 Se, Sb, Te

アルカリ金属 K, Cs, Rb

アルカリ土類金属 Ca, Ba, Sr

卑金属 Be, Zn, In, Sn, Cd, Hg, Pb

U

アクチノイド系

これにより、ほぼ全ての、無機・有機化合物のDFTB計算による、STM/STS, AFM, KPFMシミュレーションが可能となります

69元素	
遷移金属 V, Cr, Mr	n, Fe, Co, Ni, Zr, Nb, Mo, Tc, Re, Rh, Pd, Ir, Y, Sc
ランタノイド系	La, Ce, Gd, Tb, Dy, Ho, Er, Tm, Yb
半金属	Se, Sb, Te
アルカリ金属	K, Cs, Rb
アルカリ土類金属	Ca, Ba, Sr
卑金属	Be, Zn, In, Sn, Cd, Hg, Pb
アクチノイド系	U

DFTB原子間作用パラメータ preliminary DB 開発状況

DFTB計算 使用可能元素(2015/12/25更新)

	1_	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
1	H	D -	1										Р	0	NI	0		He	
2 3	Li Na	Бе Mg											AI	C Si	P	S		Ar	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	
6	Cs	Ba	*1	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn	
7	Fr	Ra	*2	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	113	FI	115	Lv	117	118]
		. –								_			-		_	-			1
:	*1 フ	シタノ	イト	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
7	*2 アクナノイト Ac Ih Pa U Np Pu Am Cm Bk Ct Es Fm Md No Lr																		
	27元表 使用可能 (2015/00/26)																		
		12	H. C	. N. (. Al.	Si. F	, <u>2</u> 0) Р. Ті.	Ru. \	W. Pt	. Au									
		15	Li, B	, F, I	Na, M	lg, S,	,, Cl, (Cu, G	a, Ge	e, As,	Br,	Ag, I,	Bi						
		•										0, ,							
	<u>32元</u> 素 追加開発																		
	17 Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Re, Ir(遷移金属)																		
	8 La, Ce, Gd, Tb, Dy, Ho, Er, Tm (ランタノイド)																		
	4 Se, In, Sb, Te (半金属) 2016年9月																		
		3	K, R	b, Cs	(ア	ルカリ	し金属	禹)										7	までに
	10-	- = \+	1 + -																69元素完了
	10 Be, Ca, Sr, Ba, Cd, Sn, Hg, Pb, Yb, U																		

SPM(走査型プローブ顕微鏡)シミュレータ用パラメータ・ データベース構築

1. プロトタイプ機の開発経緯、内容、利用ニーズ

1. プロトタイプ機の開発経緯、内容、利用ニーズ

LiqAFMで、多数の孔の開いたカンチレバーの水中での動きを シミュレーションしている様子

こようし1JJ。DFIBUバファーダがまに个化。

1. プロトタイプ機の開発経緯、内容、利用ニーズ H24.5 JST、AA&S、東北大学 プレス共同発表済

MDによる、水とマイカ(白雲母)表面の界面シミュレーション

Al(緑)、Si(黄)、 O(赤)の原子から 成るマイカ単層表 面

マイカ表面に垂直な面の各位置で探針モデルが感じ る力を可視化した図[M. Tsukada, et al., J. Vac. Sci. Technol. B 28, C4C1 (2010)]

最適推測 探針構造 最適推測 試料構造

によって行う。DFTBのバラメータがまだ不足。

1. プロトタイプ機の開発経緯、内容、利用ニーズ

H24.5 JST、AA&S、東北大学 プレス共同発表済

DFTBによるSi(111)-7x7 DAS構 造のSTMシミュレーション結果 SPM(Si4H9 tip 8個のと 探針高さ:4.0[Å] Analy. F領域とU領域の明るさの違い、 および、レストアトムがわずか SetM に見えることを再現 GeoA STM実験画像[大阪大学 森田グループ(2009)] FemA LiqAF CG F U Dimer Rest atom MD DFTB unfaulted によって行う。DFTBのパラメータがまだ不足。

最適推測 探針構造 最適推測 試料構造

Cornerholes

Adatoms

faulted

検討しているが、それにはDFTBソルバで使用可能な元素の種類を多数取りそろえること が必須条件となっている

3. 実用化されたプロトタイプ機により解決できる課題・問題点

STMによる特殊合金表面の構造解明 例)Mg3元合金のシンクロ型LPSO相 希土類元素と遷移金属を溶質原子に用いた Mg合金は、軽量、高強度、高延性を示すため、 理論・実験両面からの構造解析、特に、 劈開面のSTM観察が求められている

ソフトマテリアル系材料

ナノバイオ関連分野において、AFMによる 実験解析が増加傾向 DNAなどの生体物質のAFM実験画像を 時系列的に測定、高分子の粘弾性をAFM測定など

有機半導体分野
 有機半導体表面に金属薄膜を形成
 界面の様子をSPM観察

LPSO (Synchronized Long Period Stacking Ordered)相の STM観察[S. Kurokawa, A. Yamaguchi and A. Sakai, Materials Transactions 54, 1073-1076 (2013)]

高分子薄膜をAFM観察し、粘弾性を可視化した図[D. Wang et al., Macromolecules 44, 8693-8697 (2011).]

5. 実用化された機器の波及効果・市場規模

	•	様々な分野でのSPM実験の普及に寄与 無機・有機材料、化学、薬学、バイオサイエンス分野など シミュレーション結果を指針として、SPM実験を進めることが可能となる → 実験研究者にとって、理論シミュレーションの敷居を低くする 面倒な理論計算を、気軽に手が届く範囲に 薬学・バイオ分野でのSPM利用が著しく拡大 AFM(原子間力顕微鏡)を使って、タンパク質・DNAなどの生体物質を、 液体中でナノスケール観察 → 将来的には、細胞の働きをAFM観察可能へ 世界標準化により、SPM装置の産業界での利用促進 「生産現場」においてSPMが、ナノスケール検査・製造装置として浸透 ナノデバイス製造業から、薬品・バイオ関連産業まで、幅広い需要
锊	来的	的には、スピン偏極STM(走査型トンネル顕微鏡)シミュレータの開発へ

ナノスケールでの磁化計測、スピン偏極の振動観察へ

6. 知的財産の状況 SPMシミュレータでは、以下の二つの特許化された技術が使われている 特願2006-256169(H18.9.21):特許番号第4866695号 発明者:渡辺尚貴、塚田捷、田上勝規 探針形状データと、試料の原子配列データを元に、幾何学的な計算方法に従って、AFM画 像データを高速シミュレーションする方法 SPMシミュレータGeoAFMソルバで採用されている '特願2007-279315(H19.10.26):特許番号第5148969号 発明者:渡辺尚貴、塚田捷 液体中でAFMによって試料を観察する際の、弾性体であるカンチレバーのたわむ様子など を、弾性体・流体方程式に従って数値計算シミュレーションする方法 SPMシミュレータLigAFMソルバに採用されている

将来的には、以下の要素技術の権利化を検討したい考えである

 スピン偏極STMシミュレータ: 磁性薄膜をコーティングした探針で、磁性体試料表面を走査 スピン依存したトンネル電流を計測

▶ 原子間相互作用パラメータ・データベースそのものを、特許として権利化出来ないか? → DFTB数値計算の理論研究者にデータベースの需要はあるか?

SPM(走査型プローブ顕微鏡)シミュレータ用パラメータ・データベース構築

質問時対応用資料

原子間相互作用パラメータの作成方法について

- DFTB法では、電子状態を展開する際に、原子の軌道を模した擬原子軌道を用いる
- 計算上は擬原子軌道を直接使用するのではなく、擬原子軌道から作成されるホッピング積分、重なり積分などを用いて計算を行う
- 電荷の移動を計算するため、エネルギーが収束するまで反復計算(自己無撞着計算)
 を行う

$$\langle i | H | j \rangle = H_{i,j} = H_{i,j}^0 + \frac{1}{2} S_{i,j} \sum_{a \in \text{atom}} (\gamma_{\alpha(i)a} + \gamma_{\alpha(j)a}) \Delta q_a$$

$$E = \sum_{n} f_{n} \left\langle \psi_{n} \mid H^{0} \mid \psi_{n} \right\rangle + \frac{1}{2} \sum_{a,b \in \text{atom}} \gamma_{ab} \Delta q_{a} \Delta q_{b}$$

 $H_{i,j}^{0}$:ホッピング積分、 $S_{i,j}$:重なり積分 γ_{ab} :ハバードパラメータと原子a,bの距離から算出される値 $\alpha(i)$:基底iが属する原子、 $\Delta q_{a} = q_{a} - q_{a}^{0}$:原子aの電荷の参照電荷からのずれ f_{n} :n番目の状態の占有数 $|\psi_{n}\rangle$:n番目の電子状態

元素と元素の組に対するホッピング積分、重なり積分、元素に対するハバードパラメータ、 軌道のエネルギーをデータベース化したものが原子間相互作用パラメータ

結晶のバンド構造は、電子状態を決めるための重要な指標

該当元素を含む典型的な単体・化合物結晶でバンド構造を出来るだけ良く再現 するよう原子間相互作用パラメータの元となる擬原子軌道を最適化

NO

原子間相互作用パラメータの作成の手順(アルゴリズム)

作成したパラメータを用い、DFTBソルバのバンド計算機能で バンド計算(「パラメータ作成ツール」を使用)

先行論文のバンド構造と比較 バンド構造を再現しているか?

SPM(走査型プローブ顕微鏡)シミュレータ用 パラメータ・データベース構築 補足資料

原子~ナノスケールの構造の重要性

LPSO相の透過型電子顕微鏡像

単独で原子の配列を完全に明らかにできる手法は存在しない

	空間分解能	元素識別能力	局所的な構造の検出
透過型電子顕微鏡 (TEM)	Ô	0	△ 電子ビームの方向の 平均像
(3次元)アトムプ ローブ法(AP)	△ サブナノメート ルの分解能に 留まる	Ô	0
走査プローブ顕微鏡	○~ ◎	Δ	Ó

STM(走査トンネル顕微鏡)によるLPSO合金の観察例

STM観察によって初めて明らかになった

STS(局所状態密度測定)の結果

Vs =1.6 V, It =0.2 nA Scan 30nm x 30nm 6-9 500°C保持材

dl/dV map @+1.6V

Vs = +0.6V, It = 4nA

ドメインのサイズ=数nm~10nm

赤枠内の微分表示

クラスター配列から 来る輝点

像全体のFFT

$H:Si(110)-(1 \times 1)$

(a)

赤丸: H原子 青丸: Si原子

$Pt/Si(111)-(7 \times 7)$

