SPMシミュレータの概略

東北大学WPI-AIMR 塚田捷

🕁 ソルバー全体構成 ★ AFMシミュレータ概要 ★ 非接触およびタッピングAFMシミュレーション ★ 液中・大気中・粘弾性系・接触系・水皮膜系AFM ★ STMシミュレーション ★ KPFMシミュレーション

2016.3.5 AA&S社

SPM 探針による原子マニピュレーション

SPMは試料表面の何をどう見るのか? Si(111)√3×S√3−Ag 表面 一理論計算によるシミュレーション結果から一

STMとncAFMでは観察される像が著しく異なる!

<u>S. Watanabe, M. Tsukada, Phys. Rev. B. 1991</u>

N. Sasaki, S. Watanabe, M. Tsukada, Phys. Rev. Lett. 2002

理論シミュレーションの大きな役割が実証!

走査プローブ顕微鏡の理論

ピエゾ カンチレバー 探針 試料 What and how ? SPMはどのように試料を見るのか? 原子スケールの情報がマクロスケールの メカニズムで得られるのはなぜ? SPN SPN の理 い 局所的な力と変位 揺らぎと温度効果 の理論と 量子効果 (粒子か波か) 探針の原子レベル構造の効果? ーション 液中計測で 何が見える? ソフトマタ—系・粘弾性系・接触系の計測

STM/STS, ncAFM, Tapping AFM, KPFM,

SPMの理論シミュレータ開発

科学技術振興機構先端計測分析技術・機器開発事業 (要素技術プログラム)汎用走査プローブ顕微鏡シミュレータ 平成16~H19年度 代表:塚田捷(早稲田大学) (プロトタイプ実証実用化事業)走査プローブ顕微鏡シミュレータ 平成21~H23年度 代表:柿沼良輔(AA&S)

現状におけるSPMシミュレータソルバー一覧

ソルバー	機能	特徴
Analyzer	実験データの画像処理プロセッ サー	シミュレーションの前処理 探針形状予測と探針形状効果補正
SetModel	試料と探針の原子モデル作成	シミュレーションの前処理 原子構造モデルを作成
GeoAFM	幾何学法による交互予測AFM シミュレーション	像解像度は原子尺度ではなく、メゾか らマクロスケール
FemAFM	連続弾性体AFMシミュレータ	像解像度はメゾからマクロスケール 試料および探針の弾性変形を考慮
LiqAFM	液中カンチレバー振動解析 粘 弾性凝着系AFMシミュレータ	液中のカンチレバー振動解析 ソフトマ ターおよび粘弾性凝着系のタッピング モードシミュレーション
CG	構造最適化AFMシミュレータ	古典力学法による原子モデルの最適 化計算 液中CG-RISM計算
MD	分子動力学AFMシミュレータ	古典力学法による原子モデルの分子 動力学計算
DFTB	量子力学的SPM像シミュレータ	量子力学計算による探針力とトンネル 電流の計算 STM/STS, AFM, KPFM に対応

SPMシミュレーター覧

シミュレ タ体系図 機能と相関

原子解像度より粗いメゾスケールでのAFM像を、幾何学的計算処理で瞬時に予測

探針や試料が大きく変形する場合は有限要素弾性体力学法を併用、高精度の予測を実現

標準型および簡易高速型AFMシミュレーションの比較

タンパク分子AFM像の高速シミュレーション

PDBから

時間でAFM 像を計算し画 像化する。 幾何学条件に よって計算す る高速シミュ

1秒弱の計算

レーション法

チュブリン(tubulin)分子のFM-AFM像

H.Asakawa et al, Biophysical J., 2011, 101 (5): 1270-6

非接触AFMによるDNAの計測とGeoAFMによるシミュレーション

第1の機能:画像の予測

測定に先立ちAFM画像を予想できる。

AFMシミュレータのソルバーと機能

ソルバー	特徴	単振子 標準理論	単振子 数値計算	弾性体カンチ レバー数値計算
GeoAFM	幾何学的接触	—	—	_
FemAFM	弾性変形を含む力	0	0	0
CG	原子論的力 緩和法	0	0	_
MD	原子論的力分子動力学	0	0	_
LiqAFM	(液中)弾性体変形運動	_	_	0
DFTB	量子力学的力計算	0	0	_

すべての組み合わせが可能である。

弾性体カンチレバーモデルと単振子モデルの関係

[1] 弾性体力学と流体力学を連立して解く: 連続体モデル(ソルバー LiqAFM)

$$EI\frac{\partial^{4}x(\xi,t)}{\partial\xi^{4}} + \gamma\frac{\partial x(\xi,t)}{\partial t} + \rho\frac{\partial^{2}x(\xi,t)}{\partial t^{2}} = \tilde{F}_{driv}(\xi,t) + \tilde{F}_{TS}(\xi,t) + \tilde{F}_{liq}(\xi,t)$$
$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\cdot\vec{\nabla})\mathbf{v} = -\vec{\nabla}P + \frac{1}{\mathrm{Re}}\Delta\mathbf{v}$$

[2]簡単な扱い(単振子モデルへの射影): $x(\xi,t) = \sum_{n} x_n(t)\phi_n(\xi)$ $\ddot{x}(t) + \chi\dot{x}(t) + \omega^2 x_n(t) = E_n(t) + E_n(t)$

$$= \frac{\int_{0}^{L} \tilde{F}_{driv}(\xi, t) \phi_{n}(\xi) d\xi}{\rho S_{n}} + \frac{\int_{0}^{L} \tilde{F}_{liq}(\xi, t) \phi_{n}(\xi) d\xi}{\rho S_{n}} + \frac{\int_{0}^{L} \tilde{F}_{liq}(\xi, t) \phi_{n}(\xi) d\xi}{\rho S_{n}} + \frac{\int_{0}^{L} \tilde{F}_{TS}(\xi, t) \phi_{n}(\xi) d\xi}{\rho S_{n}}$$

 $EI\frac{d^4\phi_n(\xi)}{d\xi^4} + \rho\omega_n^2\phi_n(\xi) = 0 \qquad \phi_n(\xi)\Big|_{\xi=L} = \frac{d\phi_n(\xi)}{d\xi}\Big|_{\xi=L} = \frac{d^2\phi_n(\xi)}{d\xi^2}\Big|_{\xi=0} = \frac{d^3\phi_n(\xi)}{d\xi^3}\Big|_{\xi=0} \qquad \int_0^L \phi_n(\xi)\phi_m(\xi)d\xi = S_n\delta_{nm}$

AFMにおける単振子モデル標準理論

と 探針 (カンチレバー)の動力学を、数値的に直接求めずに、探針高さに依存する相互作用力 から探針振動の状況を求めることができる。

⇒カンチレバーの運動は、単振子の運動に射影して解析できる。
○この標準法は非接触AFMとタッピングAFMの両方に適用できる。

エネルギー散逸像

粘弾性系と接触(凝着・濡れ)系のモデリング

接触問題のJKR理論と 接触問題を含む系の タッピングモードAFM

接触問題のJKR理論

A: 接触部分の面積

 $U_{adhesion} = 2A \times u_{water_surf_tension}$

接触系におけるヒステリシス部分と粘弾性部分の扱い方

ソフトマテリアルの粘弾性的性質

理論シミュレーションの方法 $\rho S(z) \frac{\partial^2}{\partial t^2} h(z) = -\frac{\partial^2}{\partial z^2} EI(z) \frac{\partial^2}{\partial z^2} h(z)$ $-\eta(z) \frac{\partial}{\partial t} h(z) + F^{\text{liq}}(z) - \frac{\partial}{\partial z} V_{TS}$

Si_Cantilever: $_400 \mu m \times 40 \mu m \times 0.4 \mu m$ R = 20 nm v = 0.01 kHz amplitude: 200nm Sample(tip)YoungModulous: 60.0MPa(130GPa)

adhesive_energy(γ)=10J/m²

西一中嶋 による高分子表面の計測

D.Wang et al, Macromolecules, (2010) 43, 3169

η= 0.02

種々のソルバーによるAFMシミュレーションの実例

古典力学 AFM シミュレータの実例

CO 探針によるペンタン線のAFM像

fixed sample structure

- constant height
- calculation time
 20 min with PC
 simulation

experiment

L.Gross, F.Mohn, N.Moll, P.Lilijeroth, G.Meyer, SCIENCE, 325 (2009)1110

$\Delta f = rf_0 = -\frac{f_0}{2kA\pi} \int_0^{2\pi} F(A\cos\theta + L)\cos\theta d\theta$

C 探針によるDNAのAFM像

• DNA structure fixed

• constant frequency

• calculation time 3 hours with PC

simulation Tip C 1atom

BCO/C5 SAM膜のnc-AFM像シミュレーション

K.Tagami and Mtsukada e-J. Surf. Sci. Nanotech. Vol. 4 (2006) 299-306

C5 molecules are embedded into **BCO** SAM

Carbon nano-cone tip

MD snap shot Domain structures Fluctuating height

ncAFM image simulation

The higher C5 molecule at Q is observed lower than the BCO molecule at P !

Si(100)/H上のメチル基の非接触AFM像

A. Masago et al, Jpn. J. Appl. Phys., 48, 025506 (2009)

MSTBPP分子のAFM像

M.Harada and M.Tsukada Phys. Rev. B77, (2008) 205435

Hydrogen atom tip Fz = -0.0005nN $36 \text{ Å} \times 36 \text{ Å} (pixsize=0.5 \text{ Å})$

Depth = 0.5\AA

methylthiophenyltris-t-buthylphenylporphyrin (MSTBPP)分子の NC-AFM実験像 by 田中氏らgroup

シミュレーション像

実験像

分子の滑りや変形を許すと

CG 構造最適化AFM像 シミュレータ

M.Harada and M.Tsukada Phys. Rev. B77, (2008) 205435

observed by S.Tanaka

Si(111)√3×√3 表面のNC-AFM像の温度依存性

理論シミュレーションで

熱揺らぎを反映

解明

40 A

d=4.50 Å

T=6.2K

8

6

4

10

MD 分子動力学AFM像 シミュレータ

たんぱく質分子のナノカ学実験を再現

細いカーボンナノチューブによる フェリチンの穿孔

> MD 分子動力学AFM像 シミュレータ

球殻状のタンパク質分子 フェリチンを、カーボンナノチューブ探針 で押すナノカ学実験のシミュレーション

仮想粒子を 0.125A/ps で押す。 (Steered Molecular Dynamics, T=0K) MD with Langevin method で force を計算。

Distance (Å

分子動力学AFM像 MD

液中非接触およびタッピングAFM実験の理論シミュレーション

液中タッピングモードAFMのシミュレーション

タンパク質分子の粗視化と粘弾性モデル化

液中カンチレバー振動の解析理論

1)共鳴曲線は? 2)非線形効果は? 3)基盤からの高さの影響? 4)探針の受ける力の効果? time = 0.0 usec cycle = 0.00

 $\rho S(z) \frac{\partial^2}{\partial t^2} h(z) = -\frac{\partial^2}{\partial z^2} EI(z) \frac{\partial^2}{\partial z^2} h(z) + F^{\text{liq}}(z)$ h; カンチレバーの高さ た; ヤング率modulus /; 断面の幾何学的能率

液体:各断面で2次元の 非圧縮流体

カンチレバー:一方向に長い構造

 $\frac{\partial \mathbf{v}}{\partial t} + \left(\mathbf{v} \cdot \vec{\nabla}\right)\mathbf{v} = -\vec{\nabla}P + \frac{1}{\mathrm{Re}}\Delta\mathbf{v}$

Navier-Stokes 方程式

Re; レイノルズ数

M.Tsukada, and N. Watanabe Japanese Journal of Applied Physics 48 (2009) 035001

次元断面上の流体力学
「low function
$$\Psi$$
 $v_x = +\frac{\partial \psi}{\partial y}$ $v_y = -\frac{\partial \psi}{\partial x}$
Vorticity $\omega = \partial_x v_y - \partial_y v_x$ \rightarrow $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega$
Navier-Stokes 方程式から $\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla P + \frac{1}{\text{Re}}\Delta \mathbf{v}$
 $\frac{\partial \omega}{\partial t} = \left[\frac{\partial \psi}{\partial x}\frac{\partial \omega}{\partial y} - \frac{\partial \psi}{\partial y}\frac{\partial \omega}{\partial x}\right] + \frac{1}{\text{Re}}\left[\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2}\right]$ M.Tsukada, and N. Watanabe Japanese Journal of Applied Physics 48 (2009) 035001
#祝できる

Q についての閉じた方程式→ 有限要素法(FEM)で計算

カンチレバーの受けるカ
$$F_{s} = \oint \left(P + \frac{\omega}{\text{Re}} \right) dl$$

🛄 Cantilever I	🔟 Cantilever Dynamics in Liquid						
load	calc	fluid	bar	graphics	save	quit]
						Ime = 49. pele = 0.49	

共鳴曲線の計算 一水中のSi板一

LiqAFM 液中ソフトマテリアルAFMシミュレータ

液中タッピング計測におけるカンチレバー全体振動の解析

LiqAFM 液中ソフトマテリアルAFMシミュレータ

高速SPMシミュレーション法の提案

LigAFM 液中ソフトマテリアル AFMシミュレータ

液中粘弾性試料高速AFMシミュレータ

シミュレーションの方法として、まず走査や粘弾性の パラメータを設定した後、カンチレバーの振動とスキャン 動作を同時に実行させる。振動周期とスキャン速度が 同程度になってもよいことにする。これは高速AFMの シミュレーションに相当するとともに、通常のdynamic AFMにおいても、シミュレータデータの計算を迅速化す るための方法となる。

図のように探針高さの包絡線として、 高速AFMイメージをシミュレーションす る。また、励振振動との位相差から イメージをシミュレーションすることも 可能である。これらによって、高速AFM 像のシミュレーションを実行する。

通常のdynamic AFMシミュレーションにお いても、高さ、スキャン位置における力の計 算結果をコンピュータ内に残しておけば、 周波数シフトやエネルギー散逸、位相のずれ

原子尺度の液中AFM シミュレーション

K.Tagami and M.Tsukada, *I*—J. Surf.Sci.Nanotech. 4 (2006)311

液中マイカ表面のAFM像のシミュレーション結果

MD simulation 10 CG, MD 原子・分子・ナノ M.Tsukada, et al, 9 Ontop Al 材料AFM像シミュレータ J. Vac. sci,. Technol. Normal Force (nN) 8 B 28, C4C1 2011 Hollow site A 6 5 Hollow site B 3 AI 6 8 9 10 11 12 Si Ontop O Α Tip Height (A) **Ontop Si** \bigcap **Experiment** 0.2 В K.Kobayashi, et al, Nanotechnology, 0.1 Force [nN] submitted A, B: ontop of hollow site C: ontop of Al atom 0 ontop of Si atom D: E: ontop of O atom -0.1 0.5 0.3 1.0 1.5 1.8 Distance [nm]

水中マイカ表面の3次元カ分布の断面(CNT探針)

M.T., N.Watanabe, M.Harada and K.Tagami, J.Vac.Sci. Tech., B28, c4c1

<mark>CG-RISM 原子・分子・ナノ</mark> 材料AFM像シミュレータ

STMのシミュレーション

+6.33e+000 + +6.33

探針形状の効果

A-

グラファイトのSTM像の場合

Nakagawa et al, Proc. Ann. Meetingd of The Phys. Soc. Jpn, (1989) 374

Brilliouin Zone

Isshiki,Kobayashi,Tsukada J.Vac.Sci.Technol,B9(2)(1991)475 Bardeenの摂動法とDFTB法による STM像のシミュレーション -トンネル電流の計算-

DFTB 量子論的 AFM/STM/ KPFM像シミュレータ

Si₄H₉ tip; 探針高さ = 4.0 Å

$$I(\mathbf{R},V) = \frac{2\pi e}{\hbar} \int_{E_F^L}^{E_F^R} \sum_{ii'jj'} G_{ii'}^S(E) J_{i'j'}(\mathbf{R}) G_{j'j}^T(E+eV) J_{ji}(\mathbf{R}) dE$$

Unit cell of Si(111)-7x7 DAS structure

F領域とU領域の明るさの違いを再現 レストアトムがわずかに見えることを再現 シミュレーション

実験 by Sawada et al. (2009)

Si(001)-c(4x2) 表面上の 不純物のSTMシミュレーション

KPFMのシミュレーション

KPFM**像のシミュレーション**

KPFMは何を見ているのか?

ゲート電圧Vgにより、より豊かな表面状態の 情報が得られる可能性がある。

観察される"局所" 接触電位差V_{LCPD} とは何だろうか? ポテンシャル/電荷分布 ミクロ分極 ミクロ誘電応答

実験情報の理解に 理論シミュレーションは必須 → KPFM (V_{LCPD})像

KPFMの理論的基礎

局所接所電位差とは何だろうか?

KPFM**像の**シミュレーション

Si(001)-c(4x2)表面のKPFM像 -局所接触電位差の分布像-量子論的 AFM/STM/ DFTB 埋め込まれた不純物像 KPFM像シミュレータ $V_{LCPD}[V]$ $V_{LCPD}[V]$ 探針高さ 0.4nm 探針高さ 0.6nm \mathbf{V} 0.5 0.4 0.48 0.3 y 15 0.46 15 0.2 v Si4H9 探針 0.44 0.48 0.48 0.44 0.1 10 8.3 5 5 10 15 20 25 30 5 10 15 20 25 30 5 不純物 $\rightarrow \chi$ $\rightarrow x$ Si(100)c(4x2) 0 0.74 0.6 0.72 0.5 15 15 0.7 0.4 0.74 0.72 0.72 0.68 0.68 0.3 10 10 85 5 5 0 0 10 15 20 25 30 5 10 15 20 25 30 5 Al in Si(100)c(4x2) 0.28 0.2 0.26 0.1 15 15 0.24 0 0.22 8:2 -0.1 -0.1 10 10 0.26 0.24 0.22 不純物 5 0 0 0 5 10 15 20 25 30 0 5 10 15 20 25 30

P in Si(100)c(4x2)

A.Masago et al, Phys. Rev. B 82 (2010)195433

終わりに: 再びSPMシミュレータソルバー全体像

	ソルバー	機能	特徴
	Analyzer	実験データの画像処理 プロセッサー	シミュレーションの前処理 実験データを補正して計算用入力へ変 換する。探針形状の予測と形状効果を補正する。
	SetModel	試料と探針の原子モデ ル作成	シミュレーションの前処理 探針と試料の原子構造モデルを作成
	GeoAFM	幾何学法交互予測 AFMシミュレーション	像解像度は原子尺度ではなく、メゾからマクロスケールでのシミュ レーション。精密でないが、試料構造・探針構造・AFM像の2つから、 残りを高速で予測する。液中・大気中・ソフトマター全てに対応する。 近似的ではあるが実用的
	FemAFM	連続弾性体AFMシミュ レータ	試料および探針の弾性変形を考慮して、メゾからマクロスケールの 像解像度でAFMイメージを計算する。 GeoAFMとの併用、あるい はLiqAFM(tapping部分)との併用で活用する。
	LiqAFM (tapping)	液中カンチレバー振動 解析 粘弾性凝着系 AFMシミュレータ	液中のカンチレバー振動を考慮しつつ、ソフトマタ—および粘弾性 凝着系のタッピングモードシミュレーションを行うことができる。単振 子に射影した計算では、標準理論を用いると効率的である。適用領 域は(液中)ソフトマタ—、高分子など広範囲であり、使いやすくニー ズは高いと思われる。
	CG	構造最適化AFMシミュ レータ	古典力学法による原子モデルの最適化計算 液中CG-RISM計算
	MD	分子動力学AFMシミュ レータ	古典力学法による原子モデルの分子動力学計算
	DFTB	量子力学的SPM像シ ミュレータ	量子力学計算による探針力とトンネル電流の計算 STM/STS, AFM, KPFMに対応 KPFMはより実用的に拡張したい。

実用・開発者向き

研究者向き

ソルバー選択のフローチャート

