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Chapter 1 Introduction

1.1 Purpose andircumstance of thdevelopment o65PM Simulator

The scanning probe microscope (SPM) is the powerful experintentaliqueto observe
the super fine structures and to measure the physical properties in fine scale of materials in
nature or artificial material®.g.inorganic crystal surfaces, fine structures of semiconductors,
organic molecules, setfrganizing films, proteimolecules and bimano structures like DNAs.
The top of the probe tip of the SPM sensitively detects quite weak forces and charge transfers
which act in the atomic scale from a sample. Then the microscopic inforrisatiansmitted to
the mesoscopic or aeroscopic system, the probe and the cantilever, which is finally observed
in the measurement systekiowever, it is very hard to analyze the experimental results without
the theoretical supports, because the mechanical, electrical and chemical piocasses
scaleare involved together in the nagoale region at the top of the probe tip.

In fact, as seen in the various previous researftjesiumerical simulations based an
theory play important roles to analyttee extensive experiments relatiedthe SPM; the SPM
images, various spectra, namechanical experiments of bipaterials etc. However, it is
difficult for nonspecialists about the theoretical calculation to carry out the theoretical
simulatonWe have devel oped as fareof theSIBMprottimarderatd o r o
support the theoretical analyses of the SPM experiments from various measurement techniques
and environments. We have developed the commercial version of the simulator for general users
since 2013and continud the pronotional activities

Conventional SPM simulati@for research purposes used to occupy the resources of the
large scale computer for a long time. However, general nonprofessional users would prefer the
simulator with a simple operation and a reliable fteswtn though the result is not so accurate.
Our simulator, developeth theil Ge n-puap o s e S P Nyrojéct, has greatly oeduged
the computational cost according to ith@roblens so that the brief calculation can be
performed by common personal computers or workstations. Moreover, the simulator adopts the
graphical user interface (GUI) to support gimple operation for the simulation without high
background knowledgeTlhis guiddook aims to explain the contents of the SPM Simulator
developed by those projects, and to show how tahessimulator in practice. It is our pleasure
for you to use this guidebook as a convenient instruction.

! We participated in the first season (2am8D7) and the second season (20092) of
Development of Systems and Technologies for Advanced Measurement and Analysis,
organized by Japan Science and Technology Agency (JST).
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Chapter 2 Outline and Software Compositionof SPM Simulator

2.1 Composition of SPM Simulator

As shown above, the numerical simulations basecdh dhneory play important roles to
analyze the extensive experiments related to the SPM; the SPM images, various spectra,
erials etc. We have aevel
part of the JST projetin order that the general experimetalists can use this simulator with ease.

nanemechanical experiments ofcbma t

From Chapter 3, & will explain thedetails ofcontents and how to use the simulatdfe here
show, in advance, themmposition and the brief outline.

The SPM Simulator is composed of eight solvers (Analyzer, SetModel, GeoAFM,
FemAFM, LigAFM, CG, MD and DFTB) including the sample modeling tool (SetModel),

those are listed imablel.

Table 1 The list of solvers included in the SPM Simulator.

Solver Function
Analyzer Digital Image Processor c
Experimental Data

SetModel Modeling of Samples an

Tips

GeoAFM Geometrical Mutual AFM
Simulator

FemAFM Finite Element Method AFV
Simulator

LigQAFM  Soft Material Liquid AFM
Simulator

CG Geometry Optimizing AFM
Image Simulator

MD Molecular Dynamics AFM
Image Simulator

DFTB Quantum Mechanical SP}
Simulator

These solvers are the softwarasailable on the SPM Simulator, which have been

Properties

Preprocessingefore simulation.

Estimation of tip shape, Removal of -Bpape
influence.

Make atomic configurations before simulation.

Resolution is not atomic scale, but mesor
macrascale.

Resolution is not atomic scale, but mesor
macroscale.

Elastic deformation of samles and tips can be te
into account.

Oscillation analysis of cantilever in liquid.
Mechanical calculation of continuous elastic bc
in liquid.

Optimization of the atomic configuration k
classical force fielanethod.

CG-RISM simulates in liquid.

Molecular Dynamics calculation of the atorr
configuration by classical force field method.
Calculation of the force to the tip and thmneling
current by the quantum mechanics.

Calculation of STM/STS, AFM, KPFM.

developed to carry out theoretical calculations of various SPM simulakgnse 1 shows the

overall configuration of theoretical calculations available on the SPM Simulator, together with

the required solvers.
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—4 Image Processing of experimental d
— Estimation of tip shap GeoAFM
— Simulation related to AFM Geometrical mutual “ =y

AFM simulation
e

Mechanical AFM calculation of
—— AFM calculaton ~— —] elastic body model

Mechanical AFM calculation of
—— atomic model by standard metho
Simulation of Nane or Tip dynamics
mechanicaéxperiment

—— Cantilever oscillation in liqui

Geometry optimization |

Quantum mechanical
AFM calculation

— STM/STS simulation

—— STM calculation
L STS spectrum calculatio
L— KPFM calculation

Figure 1 Various calculations available on the SPM Simulator, together with the required solvers.

Molecular dynamics |

Before the simulation by the SPM Simulator, \
i magesod in order to compare with the theoreti
human errors and noises of the measured images. Beside, it is usuallyeeffetto fiest i mat e
initial tip shapeo briefly by the wuse of the
theoretical simulation with the estimated tip shape, andweenanobtain the genuine sample
structureby the simulation compared with the measlimage. The Analyzer, one of the
equipped solvers, has such functions.

Next , the SPM Simulator is able to perform fit
(i) ACalcul ation of AFM imageso based on th
(ii) ASi muimatchami o&dl Naxperi ment o,

(iii) Numeri cal analysis of Athe cantilever
(iv) AQuantum mechanical AFM calculationo.

The AFM simulation (i) based on the classical force field is applicable also to the force
spectrum between the tip and gample.

I n Athe simulation rel at ed kindoof mathedsOhd=i¥10, we h
based ona calculation of forces between the tip and the sample, the otharsimple
geometrical method without calculating forces. The former corresporttie teemAFM, CG,
MD and DFTB solvers, while the latter corresponds to the GeoAFM solver.

The GeoAFM the simple geometrical method, makesamnpAFM image by the contact
condition in which the borders of the tip shape and the sample shape are in touchpséte
shapes are coarggained in a proper scal&€he GeoAFM also reconstructs the one out of the
other two among three geometrical elements, aample material and its AFM image.

On the other hand, the mechanical methods such as FemAFM, CG, #/DFrB are
classified into two groups: CG, MD and DFTRlIculate the forcesased on atomic models of
the tip and the samplevhile FemAFM calculates the forces basedtl@ coarsegraining



continuum model The former is utilized to analyzn AFM imagein the atomic resolution,
while the latter is utilized when the atomic resolution is not required.

For more detail in case ofie atomic mode|sthere are various methods according to the
objective of the analysis;
(A) CG and MD solverare based on thdassical force field method, which calculate
interatomic forces by the use of the empirical parameters.
(B) DFTB solver calculates interatomic forces based on the quantum mechanical
calculation.
There are also several methods how to considigr deformation when the tip comes close to
the sample:
(a) The tip and the sample are assumed tadig bodies so that they do not change
their shapes.
(b) They are allowed to change the shapes.
(c) Furthermorethe thermal vibration is taken into account fioe atomscontained in
the tip and the sample
FemAFM, CG and MD solvers take (a) and (b) into consideration. (c) is available only for the
MD solver. Although (c) ighe bestapproximation, you should choose (a) or (b) when you
intend to simulate quicklgnd effectively.

As you know,in case ofanoncontact modegbserved AFM imageare not the forces itself,
but visualizatiors of some physical properties influenced by interacitm the cantilever
oscillation; such as the frequency shift of the cantiteoscillation, the dissipation of vibration
energy etcThese physical properties can be theoretically obtained, once the forces to the tip
from the sample are calculated at various tip heights. The simulator has the theoretical formula
to obtain those lpysical properties.

On the other hand, the simulator has another method by calculating the cantilever motion
directly with the forces to the tip. Especially, the fmamtact AFM simulation in liquid has to
reproduce the Acant i humerieally. Itorequaires theafluid dynamicsn | i q u
calculation in a wide space including a narrow area between the cantilever and the substrate.
The LigAFM solver hasan appropriate method which has been developed to solve such a
problem. The LigAFM solver contag the software to analyze cantilever oscillations with
various shaped cantilevers in liquid and to analyze the contact problem with a soft material.

I n ASTM/ STS simulationo, the DFTB solver i s
between the tip antthe sample, the STM image, the STS spectrum, the KPFM image etc. Those
calculations are derived from electron orbitals based on the quantum mechanics. The Density
Functional Based Tight Binding (DFTB) Method, the same as the solver name, is the tight
binding method parameterized by the first principle density functimedihod. The reliability of
the DFTB method is guaranteed, and the computational cost is known to be relatively small.

The DFTB solver calculates tunneling cursesis a basis of the STM atite STS simulation. It
is also applicable for AFM image calculat®ohecause the tipample forcesre obtained in
consideration of the quantum mechanical interaction.

As mentioned above, you can choose the most appropriate method among various
calculatiom methods equipped in the SPM Simulator corresponding to a variety of SPM
experimentsthe required physical propertjghe required resolution, the accuracy, the resource
of a computer, the desired computing time etc. We exihedthis guidebook will povide you
with a guideline to choosenappropriate method.
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2.2 Guideline todecide asolver in SPM Simulator

Figure 2 shows a guidelinehow a general user should decide appropriate solver
depending on his/ her purpose. This is a flowch
will explain the detailsoon.

Flowchart

_| Analysis and adjustment
" of SPM image

| With Experiment }_’M—ﬂ Estimation of tip shape

| Without Experiment —{ Simulation |«
simulation

N
Atomic resolution
Continuum
—_— : —
Yes mechanics m

STM, STS, KPFM AFM

PIEEY - Classical force Tt~

Geometrical

Analysis of cantilever Yes Yes
oscillation in liquid
No

Oscillation Viscoelasticity _ X
characteristic simulation

Figure 2 Flowchart to decide a solver.

For example, when a user has an experimental SPM image, the only Analyzer works well in
order to reduce the artifacts or analyze the digital image pinge3®gether with the GeoAFM,
the Analyzer can estimate the tip shape at a certain level. In mostaabeslated image and
anobserved image may be compared. Thus, the artifaetsahserved image must be removed
in advanceThe Analyzer is usefubf the preparation.

An appropriate solver depends on the resolution; whether the simulation requireganeso
macrascopic resolution or atomic resolution.

In case of the AFM simulation which does not require the atomic resolution, there are two
alternatives;
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(A) GeoAFM- to adopt the simple geometrical calculation,

(B) FemAFM- to take into account the interaction forces.
The GeoAFM is recommended when you would like to obtain a result quickly or when a sample
is so complicated that the force malhation may take a long timelhe GeoAFM also
reconstructs the one out of the other two among three geometrical elementsa satifple
material and its AFM image. Thus, you will have a cleascriptionfrom your AFM
measurement.

Of course,an AFM image obtained only from the geometrical condition may not be
accurate. Therefore, we recommend the FemAFM solver which takes into account interaction
forces between the tip and the sample, when you would like more reliable simulation. The
FemAFM soler can also simulate the deformation of the sample by a force from the tip, based
on the finite element method. It thus provides a higher reliabilitproAFM calculation in
meso to macrescopic system. Note that the computational cost becomes largenavibale of
the system. Hence, we recommend using the GeoAFM to estimate the approximate structure of
the tip or the sample, before the accurate calculatianimited area using the FemAFM.

In case ofan AFM simulation which requires the atomic rasidn, we have to prepare
atomic configurations of the sample and the tip. The SetModel solver has such a fukiction.
candidate of a tip structure is made by cutting down from a bulk structure. You can also use
your own tip model othe tip models includedh the standard database. The SetModel solver
provides a sample model afcrystal surface with a periodic structure according to the group
theory.

The DFTB solver performs the quantum mechanical calculation based on electronic states
of the sample ande tip, so that it can simulatee STM image, the STS spectrum, the KPFM
image etc. The AFM image calculations are classified into two methods; the one applies
classical force field potentials which were derived empirically for each atom pair, the other
applies the quantum mechanical interactions after calculating electronic states. The former
corresponds to the CG and the MD solvers, while the latter corresponds to the DFTB solver.

The CG solver adopts the static calculation which does not takéheéhmal effects into
account. But it evaluatestom displacements of the tip and the sample due to their interactions
by the use of the optimization method. On the other hand, the MD solver simulates atom
motions within the classical mechanics by the nirakmtegration of the microscopic equation
of motion, and then summarizes the whole results to obtain interactiors bmtveeen the tip
and the sample. Because the interaction force fluctuates rapidly with the time during such a
simulation, we decide &hinteraction force as an averaged valliee MD solver can take the
thermal effect into account unlike the CG solver.

In case of an AFM simulation in a liquid environment, we have to calcataitgeraction
between the tip and the sample affected by solvent molecules moving rmedl{CG solver
includes the CE&RIMS solver, which calculates the distribution function of liquid molecules in
the presense of the tip and the sample by the use stahstic mechanics method called the
RISM. It then evaluatea free energy ol system at a specified configuratidrhe interaction
force between the tip and the sample is derived by the gradient of the free energy as a function
of their distance. On thether hand, the MD solvean simulatelynamic behaviors of all atoms
including solvent molecules, so the MD solver can calculate tkeatiple interaction forces in
liquid. Although you may think the MD solver is an-plirpose method, the computationakt
becomes huge in case of a large number of atoms of interest.
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In case ofa noncontact AFM in liquid, we focus oa cantilever oscillation in liquid. The
simulation of a cantilever oscillation in liquid plays an effective role in order to find an
appopriate experimental conditionlt is also required to design an appropriate shape of a
cantilever. The LigAFM solver is available for such problems. The LigAFM can simulate the
oscillation analysis in consideration of the visgastic effects to the tifsom the sample. Thus,
combined with the FemAFM, the LigAFM can simulate for the AFM in liquid. Besides, the
LigAFM containssoftwarefor the contacting system to simulate the vistastic sample, as
seen in Chapter 5.
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Chapter 3 Analyzer: the Experimental | mageData Processor

Analyzer is a digital processor fexperimental scanning probe microscope (SPM) image
data. It imports binary data files, which are output by the SPM during experiments in the
laboratory. If we apply varieties of digital processing to experimental SPM image data with the
Analyzer, we can dhin new properties of samples that we have not known before. It can
compare simulation results and experimental image data obtained with the SPMs, and we can
verify whether or not the simulation results are reliable. With these functions of the Analyzer,
we can evaluate shapes of surfaces of samples in a proper manner.

We show a flow chart that expresses a concept of the Analyzer in the following figure.
SPM experimental Theoretical studies with
observations the SPM simulator
v ‘

| Experimental data‘ - Numerical simulation data

: ' 4

Comparison between an experimental result and
a simulation result with the Analyzer
Parameter estimation

v

Designing a new experiment
with the SPM

Figure 3 A flow chart expressing a concept of the Analyzer

&

Designing a new theoretical
study with the SPM

How to startthe Analyzer is as follows. Let us click [ToAl] Anal yzer ] i n fAMenu
the GUI of the SPM Simulator. Then, a window for the Analyzer appears.

3.1 How to import the experimental binary data and carry out digital image processing

In Table2, we show available file formats that the Analyzer can ingpas experimental
SPM image data.

Table 2 File formats that the Analyzer can imports

Formats of binary files Instrument makers Extensions of files
Unisoku (.dat, .hdr) Unisoku .dat
Scala Omicron par
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Asylum Research Asylum Research ibw

Digital Surf Digital Surf .sur
JEOL JEOL tif
PicoSPM Agilent Technologies .Stp
(Molecular Imaging)
Nanonis Nanonis .SXm
RHK Technology RHK Technology Inc. .sm4
RHK Technology RHK Technology Inc. .sm3
RHK Technology RHK Technology Inc. .sm2
Hitachi(SEIKO) Hitachi(SEIKO) .xqd
Shimadzu Shimadzu Corporation K
PSIA Park Systems Corp. tiff
SPIP .asc
WSXM(ASCII XYZ) xt
Gwyddion(ASCII) Axt
Bitmap .bmp
JPEG Jpg, .jpeg
PNG .png
TIFF tif

How to import the SPM image datato the Analyzer is as follows. Let us click
[File]Al Open] on AMenu Baro on the GUI of the Anal
appears, and you can choose a data file that you want to import into the Analyser with this
dialog.

In general, a two dimensional plane that a tip of the SPM sweeps does not parallel a
substrate where a sample is put. In fact, it is common that the substrate of the sample has a tilt
against the plane that the tip of thEeNs sweeps. Thus, if the hight caused by the tilt of the
substrate is much larger than the height or depth of the sample surface, small ripples and dents
of the sample surface become faint and we cannot recognize precise structure of the sample
surface.
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To avoid this trouble, the Analyzer
has a function for correcting the tilt of
the substrate where the sample is put.
How to remove the tilt of theubstrate is
as follows. Let us assume that the image
data is displayedon the Analyzer as
shown inFigure 4. [This image date is
provided by the laboratory of the
Professor Fukutani, Institute of Industrial
Science, the University of Tokyo. It is
obtained by depositing Au atoms on an
Ir substrate and annealing them. Au
islands form on the Ir substrate in a way
of selforganization. S. Ogura et aPhys.
Rev. B 73, 125442 (2006); S. Ogura and
K. Fukutani, J. Phys.: Condens. Matter
21 (2009) 474210.] Putting the cursor on
the figure displayed, we make a
right-click with the mouse. Then, a

Figure 4 An image obtained with the AFM experimen CONtext menu appears. So, let us click
before correcting its tilt. [Correct tilt].

T3 mis_oritfo [o] o=

i mis_oritio Then, the original image changes
into the one whoseltiis corrected as
shown inFigureb5. After this process, we
can recognize precise structure of the
sample surface distinctly.

A theoretical method for correcting
the tilt of the substrate is as follows. To
estimate the tilt agles around theX
and Y -axes, we apply the method of the
least squares to data on scan lines along
the X and Y-axes, so that we obtain

fitting lines. Taking an average ongles
between fitting lines and th&Yy-plane,
we correct the image of experimental
data according to the obtained angles.

Figure 5 The experimental image of SPM data afte
correcting the tilt.

The Analyzer has functions for the twlimensional Fourier analysis of experimental image
data and filtering a certain frequency components, for example, gaggfilter and a lowass
filter. If we apply the higkpass filter to the experimental imagata we obtain a sharpened
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image with enhancement of edges. By contrast, if we apply thepdsw filter to the
experimental image data, we obtain an image on the suitability of identifying the background
level.

Here, we explain the twdimensional Fourietransformation for image data. We assume
that the numbers of pixels in th& -axis and the y -axis are equal toN and M

respectively in an original imag data. We write the value at the point with coordinates
(X, y)=(n,m) as z(n,m).Th evalue of z(n,m) corresponds with the height of the sample

surface at the point(x,y) =(n,m). The Fourier transformation of(n,m) is given as
follows:

~ _ 1 hans o NU MV,
70.9) = 7 8 8 2nmexel- 26+ )

Here, for example, we consider the Fourier
analysis of the image data &figure 6.
[The image data dfigure6 is provided by
the laboratory of Professor Fukui,
Surface/Interface Chemistry Group in
Department of Materials Engineering
Science, Osaka Ubniversity.] Putting the
cursor on the image displag, we make a
right-click with the mouse. Then, a context
menu appears, and we clickmage
Processing]. So that, a new window for the
Fourier analysis appears and a black and
white image is shown in it.

Figure 6 An experimental image obtained with the SPI
befor applying the Fourier analysis.

In the window for the Fourier analysis, we can use three modes, [Cartesian], [Fourier] and
[Power spectrum] as shown Figure?, Figure8 andFigure9:
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5 11100621 [F=TEr—x) 5 11100621 [F=TEr—x)

| @ o [Cartesian v s12x 612 ! e e ' o [Fourier v s12x 612

F{Qure 7 An imagé of the [Cartesian] mode of the  Figure 8 An image of the [Fourier] mode of the
original data obtained with the AFM. original data obtained with the AFM.

g 11100621 = | B |

\ & 512 X 512

Figure 9 An image of the [Power spectrum] mode of the original data obtained with the AFM

Adjusting a slider at the top of the window, we can vary the frequency whose component is
enhanced. Moving the slider to the rigiand side a lite, we obtain an image with the
high-pass filter as shown iRigure 10, Figure 11 and Figure 12. Looking at these figures, we
notice that we can detect edges easier than the original image.
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AFM image with the high-pass filter.

-:-—Elg

3 11100621

&\ er u 512 X §12

FigLE 10 Output of the [Cartesian] mode (;f the

11100621 R Y [F=TEr—x)
- .

image with the high-pass filter.

Figure 12 Output of the [Power spectrum] mode of the AFM image with the higkpass filter.

Comparing the graphs of the power spectrumfor the original image and thedsigfiitered
image, we notice that a slope of the graph of the power spectrum variesicoslynaccording
to the adjustment of the slider at the top of the window. This implies that not only one
component of a certain frequency but also the whole Fourier components are changed for
generating a continuous adjustment. In other words, the distribof the power spectrum is

interpolated automatically in a wide range of frequencies for keeping consistency.

Moving the slider to the lethand side a little, we obtain an image with the-pass filter as
shown inFigure 13, Figure 14 and Figure 15. Looking at these figures, we notice that we can

identify the background level easier than the original image.
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Figure 13 OLT[;UI of the fEartesian] mode of the Figure 14 Ouipﬁi of the [F&Jrier] mode of the AFM
AFM image with the low-pass filter. image with the lowpass filter.

3 11100621 (oo =0 ]
&, = =

Figure 15 Output of the [Power spectrum] mode of the AFM image with the lowpass filter.

The Analyzer provides a function for improvitite subjective quality of the imageth the
Lanczos interpolation. It uses the following kernel:
L(x)=1 if x=0,

L(x) = SSNBISINXTS) - g <3,

pPX
L(xX) =0 otherwise,
B3 oy
Sxy)= a asLx-ihLly-j).
i=ex(r 2 j=8y(r 2
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1110050009 Topography[RIGHT]

Figure 16 An original image obtained with the SPV
experiment before improving with the Lanczo
interpolation.

For example, let us improve the quality
of an image of experimental data given in
Figure 16. (This experimental image data
is provided by Professor Hiroyuki
Hirayama, NandQuantum Physics at
Surface & Interface, Department of
Materials & Engineering, Tokyo Institute
of Technology.)

Putting the cursor on the image
displayed, we make a riglatick with the
mouse. Then, a context menu appears. So
that, we choose [Image Processing] and
click it. Then, a new window for the
Fourier analysis appeares and the black
and white imge is displayed on it as
shown inFigurel7.

1110050009

512 X 512

4 | Cartesian Z

Let the resolution of the
black and white image shown
in Figure 17 be fine. To obtain
the higher resolution, we click
an icon of the magnifying
glass in the upper left corner
of the window with the mouse.

Figure 17 The black and white image obtained with the SPI

experiment before making its resolution fine.
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oo I SEES)  Then, we obtain a new

. 1636 X 1535 image withhigh resolution as
) : 2 .|| shown inFigurel8.

Figure 18 An image obtained with the SPM experiment with higl
resolution.

3.2 Correcting images with the machine learning method realized with the neural
network

Let us consider the following problem for example. Carrying out the AFM observation of
the collagen (a polymer chain) with a broken double tip, we obtagxperimental image with
artifacts. Letting the machine with the neural network learn from this image, we try removing
artifacts of the other AFM image obtained with the same broken double tip according to the
functions of the machine learning.

22



e ; i EEen o In Figure 19, we show the AFM image of
the collagen obtained by simulation using a
carbon monoxide (CO) terminated tip. We
derive this image with the solver GeoAFM.
Because the carbon monoxide terminatied
is very small and sharp, we can regard the
obtained image as a nearly ideal and perfect
one.

Figure 19 The AFM image of the collagen obtained b
simulation using a carbon monoxide (CO) terminate
tip (Weregard this image as a nearly ideal and perfe
one.)

Here, we consider the broken double tip as shown in
Figure20.

Figure 20 The broken double tip.
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E collagen-double-tip.cube

ol e ==

In Figure 21, we show an AFM image of
the collagen obtained by simulation using the
broken double tip. We create this image with
the GeoAFM. Looking at t8 AFM image
carefully, we notice that the surface of the
collagen is rough with artifacts caused by the
broken double tip. So that, we try removing
these artifacts with the machine learning
method realized by the neural network.

Figure 21 An AFM image

broken double tip.

How to use theneural
[ToollA[ Neur al net

of the collagen using th

network simulator
Simul ator] in

let us click
bar

is as follows. At first,
the menu

of t

h

appear s.A[Qpenkin the themut baruos thecwindowkfor [ Fi | e ]

simul atoro
the ONesumalaéeobr o.
¥ Neuralnet simulator = | B |
File  Display
Y rnnm Check Trial
timer counter=389 | Trainire Da= & X

E between original and reconstructed
image=0.014403
ME between original and reconstructed
image=0.0707538

timer_counter=340

MSE between original and reconstructed
image=00143973

ME between original and reconstructed
image=00707416

timer_counter=391

MSE between original and reconstructed
image=0.0142964

ME between original and reconstructed
image=0.0707526

timer_counter=392

MSE between original and reconstructed
image=0.0145906

ME between original and reconstructed
image=0.0707404

-
;

Then, a dialog box of
appears, so that we choose theAFM image data file
of the collagen with the broken double tip. Here,
the file format of the AFM image data has to be the
ACubeo. Next, a dialog
i ma g e pears, sopthat we choose the AFM
image data file of the collagen with a carbon
monoxide (CO) terminated tip as a nearly ideal and
perfect image. The file format of this AFM image
data has to be the
we obtain a window as skm in Figure22.

To start the machine learning with the neural
network, we click the triangishaped [Start] button,
which is put on the toolbar at ghtop of the

Figure 22 A screenshot of the neural networ window. Then, the machine learning starts.

simulator.

0Sel

b ox

iCubeo,

When the machine learning with the neural network ends, we click the [Pause] button,
which is put on the toolbar at the top of the window. To confirm a result of the machine learning,
click the [Check] button on the toolbar. Then, three images as shokigure 23, Figure 24

andFigure25 appear.
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Input Image Reconstructed Image Difference Image

Figure 23 The Input Image for Figure 24 The Reconstructed Figure 25 The Difference Image

the Neuralnet simulator. Image of the Neuralnet of the Neuralnet simulator.
simulator.
Figure23, Figure24andFigure25s how t he o0l nput I maged, the fARe
the fADimhgeénceespectively. The I nput |l mage r

which is obtained by the AFM observation of the collagen with the broken double tip. The
Reconstructed Image represents the modified image, which is generated according to she result
of the machine learning. In other words, the Reconstructed Image is obtained by removing the
artifacts from the Inputimage. The Difference Image represents differences between the Input
Image and the Reconstructed Image. If there is nothing in the &iffeimage, the artifacts are
removed completely by the machine learning.

We can store the results of the machine learning as a file by clickingf8aye Weight
File] on the menu bar.

Finally, we remove artifacts from another new AFM experimentagér@gata by using the
results of the machine learning. Clicking the [Trial] button on the tool bar, we choose a cube file
of another AFM experimental image data that contains artifacts. Here, for example, we use the
AFM image data of a single molecule ofyGbprotein (1clg) on HOPG (Highly Oriented
Pyrolytic Graphite) with the same broken double tip. We can create tligeirwith the
GeoAFM. ThenFigure26 andFigure27 appear.
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Input Image Reconstructed Image

Figure 26 An experimental AFM image of a Figure 27 A corrected image that is obtained
polymer with the broken double tip. according to the results of the machine learning
with the neural network.

In Figure 26, we fow an experimental AFM image of the polymer obtaine with the broken
double tip In Figure 27, we show a modified image , which we can obtain by correcting the
image ofFigure 26 according to the results of the machine learning with the neural networks.
To examine whether the artifacts aeenoved or not, we displdyigure 26 andFigure 27 with
the Analyzer as files of the cube format. Let us put the cursor on the figures, malaicight
with the mouse and choodexport toAnalyzer]. ThenFigure28 andFigure29 appear.

[ole == 53 Reconstructed_geo_result01[1].cube o a =

5 geo_resultoi[1].cube

Figure 28 An experimental AFM image of a Figure 29 The corrected image of the polymer
polymer with the broken double tip. according to the results of the machine learning
with the neural networks.

In Figure28, we showan experimentaAFM image of a polymer with the broken double tip.
In Figure 29, we showthe corrected image of the polymer according to the results of the
machine leming with the neural network&ooking atFigure28 andFigure 29, we notice that
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the artifa¢s are removed. However, Figure29, we can find some shabulges that stick out

from the lefthand side of the polymer. This wrong shape of the sample surface occurs because
the training data is not enough for the machine learning with the neural networks. To avoid this
trouble, we need to give much traininata for the machine learning.

3.3 The blind tip reconstruction method and removing the artifacts from experimental
images

The blind tip reconstruction method is an algorithm for estimating a shape of the tip from
experimental AFM image data in direct.this section, we explain the blind tip reconstruction
method briefly and introduce a method for removing artifacts of an image data obtained with a
broken tip.

For example, we consider a broken double tip. lssswppose that we scan the following
samples with the broken double tip.
(a) A completely flat sample Higure30)
(b) A sample with some shappotuberances sticking out from its surfadégre31)
(c) A sample with some blunt protuberances sticking out from its surfégeré¢32)

w- W W

The sample

The AFM image

Figure 30 An AFM image of the Figure 31 An AFM image of the Figure 32 An AFM image of the
completely flat sample with the sample with some sharp sample with some  blunt

broken double tip. protuberances sticking out from protuberances sticking out from
its surface using the broken its surface using the broken
double tip. double tip.

Looking atFigure30, Figure31 andFigure32, we notice that the AFM images depend on the
shape of the tip. Thus, the blind tip reconstruction method, we pick some parts of images of
the protuberances from the experimental AFM image data. Then, we overlap the pieces of
images as shown fRigure33.
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Figure 33 Overlapping two pieces of images of thprotuberances sticking out from the sample surface

Overlapping many pieces of images of {m®tuberances sticking out from the sample
surface, we obtain their intersection. We regard this intersection as an approximation of the
shape of the tip. Thus, if we prepare a sample with many protuberances sticking out from its
surface, observe it with the AFM and overlap the pieces of imagésegbrotuberances as
sample data, we obtain an accurate approximation of the shape of the tip.

We explain this process more precisely in the following. As showiguare 34, we take a
piece of a image of each protuberance with a certain fixed width from the AFM experimental
image data. When we take the piece of the image, we arrange that the highest part of the
protuberance is put at the center of luege of the partial image.

Figure 34 Taking pieces of images of the protuberances with a certain fixed width from the experimental AFM
image data

Next, as shown ifrigure 35, we overlap the pieces of the images, which we tear from the
experimental AFM image witith a certain fixed width. Then, we adjust them, so that the highest
points of the protuberances are puthe center. Obtaining the intersection of them, we regard it
as an approximation of the shape of the tip.

Figure 35 Adjusting the the pieces of the images, which we tear from the experimental AFM image, so that the
highest points of the protuberances are put at the center, and obtaining their intersection

The process explained above is the typical one of the blmdetionstruction method.

Moreover, we can consider a modified version of the blind tip reconstruction method. For the
method explained in the above paragraphs, we arrange the torn partial images of the
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protuberances of the sample, so that their highestpare put at the center. By contrast, in the
modified version, we do not make this arrangement.

In the modified version, we tear the partial images in all possible ways with a certain fixed
width from the experimental AFM image, and overlap all of thEar.a concrete example, we
consider a situation shown Figure36. In Figure 36, we take four samples specified with blue
short line segments. Although we take samples from the experimental AFM image in all
possible ways and overlap all of them, we concentrate on these four samples for anvhke to
the discussion simple.

Figure 36 Tearing the partial images in all possible ways with a certain fixed width from the experimental
AFM image.

Taking those four samples from the experimental AFM image, we process themvasrsho
Figure 37. We overlap these samples with arranging that the highest points of the samples are
put at the center. Because we put the highest point of the sample at the center, we have to apply
a parallétransport to the sample images. This parallel transport makes a gap in the intersection
of the overlapped samples. We fill this gap with stuff, whose height is as tall as the part of the
center. Overlapping the samples torn from the experimental AFMeiriraghis manner, we
obtain their intersection. Then, we regard this intersection as an approximation of the shape of
the tip. In general, the approximation of the shape of the tip obtained in this modified method is
thinner than that obtained with origiraind tip reconstruction method.
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Figure 37 Overlapping samples torn from the experimental AFM image in all possible ways with arranging
that the highest points of the samples are put at the center

From these discussions, whbtain two approximations of the shape of the tip as follows:

1. An approximation of the shape of the tip derived with the original blind tip reconstruction
method. (We name this result the approximate shape A.)

2. An approximation of the shape of the tip dedweith the modified blind tip reconstruction
method, that is to say, with overlapping samples torn from the experimental AFM image in
all possible ways. (We name this result the approximate shape B.)

The analyzer has a parameti [0,] for the blind tip reconstruction method, and we can

choose the following options by specifying a value of the parametekccording to the value

of the parameterx, we obtain either the approximate shape A or teegmate shape B. If

we set X =0, we obtain the approximate shape A. If we set1, we obtain the approximate
shape B. if we sef0<Xx<1, we obtain a superposition of the approximate shape A and the
approximate shape B,where the ratio of the shape A to the shape B stdhdsat x.

If we estimate the shape thfe tip from the experimental AFM image data, we can evaluate
the original shape of the sample surface, with removing artifacts caused by the broken tip, out of
the experimental AFM image data and the data of the approximate shape of the tip. The solver
GeoAFM has a function to carry out this process, and we do not explain how it works
theoretically in detail here.

In the following paragraphs, with a concrete example, we explain how to obtain an

approximate shape of the tip from the experimental AFM intkeda and evaluate the original
shape of the sample surface.
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First, let wus think about atrtificial
microstructures for the original sampllata as
shown inFigure 38.

Figure 38 Artificial microstructures for the original
sample data.

Moreover, we prepare thedken double tip as shown
in Figure39.

214%

Figure 39 The broken double tip.
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Performing the AFM observation
of the artificial microstructures as the
sample with the broken double tip, we
obtain the experimental image data
shown inFigure40. In Figure40, at the
tops of protuberances sticking out from
the sample surface, wecan find
artifacts caused by the broken double
tip. (We can generate this AFM image
with the GeoAFM from the original
sample data and the data of the broken
double tip.)

Figure 40 The experimental AFM image obtained by th
AFM observation of the artificial microstructures as the
sample with the broken double tip.

From the experimental AFM image data showrrigure 40, we estimate the shape of the
tip. We assume that the experimental AFM image data showigime40is stored as the Cube
format image file. Clicking [Filéj[ Opené] on t he t ool bar of the
AFM experimental image that is stored in the Cube format.

Putting the cursor on the window where the
image is dislayed, we make a righick with the
mouse. Then, the context menu appears, ard w
choose [Tip Estimation]. Next, we pi5 for [Tip
Nx], 25 for [Tip Ny] and 0.0 for [Parameter].
Then, ve obtain the image shown kigure41 as the
result of the blind p reconstruction method. In
Figure 41, to show the dataf the shape of the tip
estimated, tip_result.cube, we choose options such as,
3D-View, Rainbow for [Color], and take-range
Normalize off.

In Figure 41, because we put0.0 for
[Parameter] of [Tip Estimation], we obtain an
Figure 41 The image of the estimated ti apprOXimation of the Shape of the tlp for the Original
derived with the original blind tip blind tip reconstruction method. In fact, the
reconstruction method. approximate shape of the tip shownFigure 41 is
similar to the original shape of the broken double tip shoviigare 39.
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We can remove the artifacts from
the experimental AFM image as
follows. Putting the cursor on the
window, wher the AFM image with
the artifacts is displayed, we make a
right-click with the mouse. Then, the
context menu appears, and we choose
[Eliminate Tip Effect]. With the
dialog of [Select Tip], we select the
file Atip_result.cubebod
generate  with the blind tip
reconstruction method before. Finally,
Figure42 appears.

In Figure 42, we show the
experimental AFM image from
which we remove the artifacts caused
by the broken doub tip. In fact
looking atFigure42, we can confirm

Figure 42 The experimental AFM image in which the artifact: that the artifacts are removed _f“?m
are removed according to the data of the approximate shape the tops of the protuberances sticking

the broken double tip. out from the sample surface.

So far, we explain how to perform the original blind tip reconstruction method with putting
0.0 for the parameter. Next, we explain how to perform the modified blind tip reconstruction
method with puttingl.0 for the @mrameter ofTip Estimation]

In Figure 43, we show an approximate
shape of the broken double tip obtained from
the experimental AFM image data of the
artificial microstructures with puttindl.O for
the parameter ofTip Estimation]. Looking at
Figure 43, we notice that the estimated tip is
very sharp.

Assuming this sharp tip, we try removing
the artifacts fromte experimentaAFM image.
Then, we obtairFigure 44. Looking atFigure
44, we notice that the artifacts are not removed
perfectly from tle tops of the protuberances
sticking out from the sample surface.

Figure 43 An approximate shape of the tip witt
putting the parameter 1.0.

33



As discussed above, the value of
the parameter of [Tip Estimation] is
very important Thus, we had better
choose a suitable value as the
parameter of [Tip Estimation] for our
own purpose.

Figure 44 An image obtained with removing the artifacts fromr
the experimental AFM image data according to the estimate

shape of the tip with the parameter 1.0.

3.4 Digital image processing functions for comparing the experimental SPM image data
and results of the numerical simulation

The Analyzer has some digital image processing functions for comparing the experimental
SPM image data and results of the numerical simulation. Using these functions effectively, we
can obtain new knowledge about properties of the physical systems, samptigss ahlmdthis
section, we explain them one by one.

With the Analyzer, we can apply the thresholding process to the experimental SPM image
for creating the binary image, so that we can change the originalieental SPM image into a

blackandwhite image. We leth, ... represent an average of the all pixel valubs,,

represent the largest pixel value, ahg,, represent the smallest pixel value. We pagrdion
to the fact that the following relation does not always hold in general:

e 5 (s * )
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Figure 45 Correspondence between the pixel valu
and the values of the parameter for thresholding th
image data.

threshould value is set t0.5.

Thus,we let the pixel values correspond to
the valuesf a parameter as shownhigure45.
Specifying the threshold value, we make pixels,
whose values are greater than the threshold
value, turn white. In a similar way, we make
pixels, whose values are smaller than the
threshold alue, turn black.

In the following paragraphs, we explain
how to apply the thresholding process to an

experimental SPM image data with the
Analyzer actually. The threshold value has to be

between 0.0 and 1.0 . By default, the

In  Figure 46, we show an
experimental SPM image. Here, we try to
apply the threshoulding press to this
image data. We assume that this image is
stored as a file with the Cube format and
displayed with the Analyzer. (This image
is provided by Professor Hiroyuki
Hirayama, Nane&Quantum Physics at
Surfaces and Interfaces, Department of
Materials and Engineering, Tokyo
Institute of Technology.)

Putting the cursor on ¢h window
where the image dfigure46is displayed,
we make a rightlick with the mouse.
Then, a context menu appears, and we
choose [Black and white]. Next, a window
requiring [Threshold] appears, and we put

Figure 46 An experimental SPM image that we try t« a preferable value for the threshold.

apply the thresholding process
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Putting 0.4 for the threshold value
and applying the thresholding process to
the original expemental SPM image, we
obtainFigure47.

Figure 47 An image obtaine by putting 0.4 for the
thresholding value and applying the threshold process
the original experimental SPM image.

Putting 0.6 for the threshold value
and applying the thresholding process to
the original experimental SPM imagwe
obtainFigure48.

Figure 48 An image obtaine by putting 0.6 for the
thresholding value and applying the threshold process
the original experimental SPM image.

With the Analyzer, we can adjust the contrast of the experimental SPM images. To change
the values of each pixel, we adopt the Gamma correction method. The Gamma correction

36



adjusts the contrast of the image as follows. First welg} represent the largest pixel value
and h, represent the smallest pixel value. We hetrepresent a value of the pixel at certain
point. The Gamma correction changbsinto h' according to the following equation:
_&h-h,g"”

¢ Dh =
where Dh=h_, - h, and g is a parameter given by the user. In the Analyzer, the
parameter is put in the range 6f25¢ g ¢ 4. By default, g is set to 1.0.

h' Dh+h,,,

In Figure 49, we show an
experimental SPM image. Here, we try to
adjust the contrast othis image. We
assume that this image is stored as a file
with the Cube format and displayed with
the Analyzer. (This image is provided by
Professor Kesichi Fukui,
Surface/Interface  Chemistry  Group,
Department of Materials Engineering
Science, Osaka Univsity.) In Figure 49,
the image is too bright, soahwe cannot
distinguish small differences of varied
surface heights on the sample.

Putting the cursor on the window,
where the image dfigure49is displayed,
we make a rightlickwith the mouse.
Then, the context menu appears, and we
Figure 49 An experimental SPM image whose contrastv choose [Contrast adjustment (Gamma
try to adjust. correction)]. Next, a window requiring
[Gamma] appears, and we uprefebrable value for [Gamma].
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Adjusting the contrast of the image
shown in Figure 49 with g=0.33, we

obtain a carected imageshown inFigure
50. Because of the adjustment of the
contrast, the image is improved and we
can distinguish differences of varied
surface heights on the sample well.

Figure 50 A corrected image obtained with adjusting th
contrast of the original experimental SPM imagewith

g=033

With the Analyzer, wean detect edges of the experimental SPM images.

An algorithm of the edgeletection is as follows. In
h(-1,1) | h(0,1) h(1,1) Figure51, we show a323 3 pixel neighborhood extracted
from the experimental SPM image. In the following
h(-1,0) | h(0,0) h(1,0) paragraphs, we explain how to apply the Sobel filter to the

pixel h(0,0).
h(-1,-1) | h(0,-1) [ h(1,-1)

Figure 51 A 333 pixel

neighborhood extracted from the

experimental SPM image.
1 0 1 We take a weighted sum of values of pixels for B& 3

B pixel neighbohood with a kernel shown ifrigure 52. We

o) 0 ) regard this sum asf, , a derivative with respect tX.

1 0 -1

Figure 52 A kernel for computing
a derivative with respect to X.
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1 ) 1 We take a weighted sum of values of pixels for B& 3
pixel neidibohood with a kernel shown ifrigure 53. We

0 0 0 regard this sum asfy, a derivative with respect toy .

10 2 |-

Figure 53 A kernel for computing
a derivative with respectto VY .

Here, let us compute the following value:
fi=(f2+1f°)"%
Then, we replaceh(0,0) with the derivative fj obtained above. We apply this operation to
all pixels of the experimental SPM image.

In Figure 54, we show an
experimental SPM image. Here, we try to
apply the edge detection tiois image data.
We assume that this image is stored as a
file with the Cube format and displayed
with the Analyzer. (This image is provided
by Professor Hiroyuki Hirayama,
NancQuantum Physics at Surfaces and
Interfaces, Department of Materials and
Engineering,  Tokyo Institute  of
Technology.)

Putting the cursor on thavindow,
where the image dfigure54 is displayed,
we make a rightlick with the mase.
Then, a context menu appears, and we
choose [Edge detection (Sobel filter)].

Figure 54 An experimental SPM image, to which we try t
apply the edge detection.

39



Applying the edge detection to the
original experimental SPM image, we
obtain an image shown idrigure 55.
Because obtained image is not bright
enough, we adjust itontrast.

Figure 55 An image obtained with applying the edg
detection to the original experimental SPM image.

Adjusting the contrast of the image,
which is obtained by the edge detection
above, with g=2.0, we obtain an image
shown in Figure 56. Because of the
adjustment ofthe contrast, the image of
Figure56is very clear.

Figure 56 An image obtained by the edge detection ai
the adjustment of the contrast with g =2.0.

With the Analyzer, we can remove noises fromekperimental SPM image data.
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h(-1,1) | h(0,1) [ h(1,1)
h(-1,0) | h(0,0) |[h(1,0)
h(-1,-1) [ h(0,-1) | h(1,-1)

Figure 57 A 33 3 pixel neighborhooc

We explain how to remove noises from the
experimental SPM image data as followsFigure57,
we show a33 3 pixel neighborhood extracted from
the experimental SPM image. We apply the median
filter to the pixel h(0,0) in the following manner.
First, we find the median from nine entries in the
33 3 pixel neighborhood. Here, the median is the
fifth entry in ascending order of the nine entries.

Second, we replacd(0,0) with the median. Third,

extracted from the experimental SPM image We carry out this process to all pixels in the
experimental SPM image.

Figure 58 An experimental SPM image, to which we try t
apply the noise reduction.
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In Figure 58 ~we show an
experimental SPM image. Here, we try to
remove noises from this image. We
assume that this image is stored as a file
with the Cube format and displayed with
the Analyzer. (Thidmage is provided by
Professor Katsushi Hashimoto, SeSthte
Quantum Transport Group, Department of
Physics, Graduate School of Science,
Tohoku University.Looking atFigure58,
we notice that therare noises inside a
green circle.

Putting the cursor on a window, where
the image ofFigure 58 is displayed, we
make a rightlick with the mouse. Then, a
context menu appears, and we choose
[Noise reduction (median filter)].



In Figure 59, we show animage
obtainal by applying the noise reduction
to the expamental SPM image shown in
Figure58. Looking at the corrected image,
we notice that thaoises inside the green
circlesareremoved.

Figure 59 An image obtained with applying the nois
reduction to the original experimental SPM image.

With the Analyser, specifying two end points on the experimental SPM image, we can
display a cross section of sample surface along a line segment betweeneahd points.

In Figure 60, we show an
experimental SPM image. We
assume that this image is stored
as a file with the Cube format
and displayed with the Analyzer.
(This image is provided by
Fukutani Laboratory, Surface
and Vacuum Physics, Institute
of Industrial Science, The
University of Tokyo.) Here, we
YLAng] explain how to display the cross
section of the sample surface in
the following paagraphs using
the image ofFigure60.

First, let us put the cursor on
the image of the window and
make a doublelick with the
mouse. Then, we can specify the
end point A on the image.
Second, let us move the cursor

Figure 60 A line segment AB that determines the cross section of t Properly —and ~ mak  a
sample surface in the experimental SPM image. doubleclick again. Then, we
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can specify the end point B, and a line segment between end points A and B appears.

7] Cross Section View =IEEN X If we determine the line
Cross-Section Analusis segment AB, a crossection of
Figure6l appears.

Figure 61 A cross section specified with the line segment AB.

Moreover, putting the cursor
on the window that displays the
SPM  image, making a
right-click, and choosing
[3D-View] and [CrossSection
(D-click)]A [Clipping] from the
context menu, we obtain a 3D
crosssection view as shown in
Figure62.

Figure 62 A 3D crosssection view derived from the experimente
SPM image.

With the Analyzer, specifying three points A, B and C on the experimental SPM image, we
can obtain lengths of line segments AB and BC and an angleARC .
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In Figure 63, we show an
experimental SPM image. Here, we try to
calculate lengths of line segments and an
angle fromthree points on this image data.
We assume that this image is stored as a
file with the Cube format and displayed
with the Analyzer. (This image is provided
by Professor Hiroyuki Hirayama,
NancQuantum Physics at Surfaces and
Interfaces, Department of Matals and
Engineering, Tokyo Institute of
Technology.)

In Figure 63, the structure of
Si(111)}(7x7)DAS is shown. Because the
image is not clear, we apply the edge
detection and the adjustment of the

Figure 63 An original experimental SPM image of th contrast with g=2.0 . Moreover, we
structure of Si(111}(7x7)DAS. enlarge the image using the wheel of the
mouse and drag the image by muyithe mouse with a ledtlick propely. Finally, we obtain
Figure64.

Putting the cursor on the
window of Figure 64, we
make a rigt-click with the
mouse. Then, a context nenu
E— — appears, and we choose

L ) [Measurement of lines and
their angle]. Next, we specify
three points A, B and C on the
processed SPM image by
doubleclicks. Then, blue line
segments AB and BC appear.

53 1110050009_Topography_LEFT_edge.cube

Figure 64 An SPM image of Si(111)7x7)DAS structure obtained by tht
edge detection and the adjustment of the contrast withg = 2.0 .
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| Line... (o=l

poitt-& (162493 -2011.86)
point-B: (164721, -2025 58)
point=C: (1621.22, -2034 &)
length of line AB: 26.1716
lenegth of line BG: 274743
ahele ABC: BOGEAYL

Figure 65 The results of the
measurements, lengths of the lir

segments AB, BC and| ABC .

After the above process, a window that shows results of
measurements appears as showhRigure65. In this example,
the results of the measurements are provided as follwos:

The length of the line segment AB: 26.1716 [angstom]

The length othe line segment BC: 26.4743 [angstom]

I ABC: 50.5854 [degree]

3.5 Examples of practical uses of the Analyzer

Here, we introduce some examples as practical uses of the Analyzer. We compare a

simulation result of Si(113)7x7)DAS structure obtained with the GeoAFM and an
experimental SPM image of Si(11@x7)DAS structure. As shown iRigure 66, we display

the simulation result and the experimental image simultaneously on the Analyzer. (This
experimental image is provided by Professor Hiroyuki Hirayama, Mammtum Physics at
Surfaces and Interfaces, Department of Materials and Engineering, Tokyo Institute of

Technology.)

& Analyzer

File  Window Tool

==

&

53 das7.cube

4 1110050009_Topography_LEFT.cube = | =

|

Figure 66 Comparing a simulation result of Si(111)(7x7)DAS structure obtained with the GeoAFM and an
experimental SPM image of Si(111f7x7)DAS structure.
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To obtain the image of the espmental SPM data shown ffigure 66, we enlarge the
image using the wheel of the mouse and drag the image by moving the mouse withick left

properly.

For both the simulation result and the experimental AFM image, we dengths and
angles of theSi(111)}(7x7)DAS structure with the functiofiMeasurement of lines and their
angle]as shown irFigure67.

B Analyzer

ZBE

%3 1110050009 _Topography_LEFT.cube

3 das7.cube o |[@ =

point=# (-1 48156, ~8.00731)
point=B: (-21.8566. 0.857657)
point=C: (-0 506562, 852768)
length of line AB: 227756
length of line BC: 227438
angle ABC: 453803

aint-A: (1668.38, -2038.73)
aint-B: (1690.39, -205194)
aint-C: (1664.52, 2062 38)
leneth of line AB: 256705
leneth of line BG: 2758749
angle ABG: 52 975

Figure 67 Deriving lengths and angles of the Si(114(7x7)DAS structure with the function [Measurement of
lines and their angle]for the simulation result obtained with the GeoAFM and an experimental SPM image

For the simulation result obtained with the GeoAFM, we obtain the following results:
The length of the line segment AB: 22.7756 [angstrom]
The length of the line segment BC: 22.7433 [angstrom]
I ABC: 45.3893 [degree]

For the experimental image, we obtain the following results:
The length of the line segment AB: 25.6705 [angstrom]
The length of the line segment BC: 27.8979 [angstrom]
& ABC: 52.975 [degree]

The above results afie measurements are consistent with each other between the result of
the simulation and the experimental image.

Moreover, let us use the function of [Cré&3scton (D-click)]. As shown inFigure 68, we
can compare cross sections of the simulation result and the experimental SPM image.
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i Analyzer

ZRE

i das7.cube

53 1110050009_Topography_LEFT.cube

Cross-Section Analysis

20.4
- . iiiiiiiilllllllliiiIiIHIE

e s v s st

Cross-Section Analusis

Figure 68 Comparing cross sections of the simulation result and the experimental SPM image of the
Si(111)(7x7)DAS structure using the function [CrossSection (Dclick)].

As explained in this section, using the Analyzer, we can apply various digital processings to
the simulation results and the experimental SPM images at will in convenient manners. Thus,
you can obtain new knowledge from them.
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Chapter 4 Geometrical Mutual AFM Simulator (GeoAFM)

Geometrical Mutual AFM Simulator (GeoAFM) provides users with a kihd threeway
data processor, so that it reconstructs the one out of the other two among three geometrical
elements, a tippsample material and its AFM image.

A characteristic of this module is that it can only sort out geometrical data of the tip, the
sample material and its AFM image. Thus, it never includes the contribution caused by the van
der Waals interaction between the tip and the sample material. Worethis simulator
assumes that the tip artle sample material never suffdrom deformation. Hence, the
GeoAFM produces a result from only the information of the geometry of the tip, the sample
material and the AFM image. Throughout the simulation, thiglule assumes that the tip
always touches the surface of the sample material, so that it scans the surface of the sample in
the secalled contact mode.

As mentioned above, the GeoAFM never takes equations of both classical and quantum
physics into acaant. Considering the tip, the sample material and its AFM image to be genuine
geometrical objects and assuming the tip and the sample material always to be in the contact
mode, this module performs the simulation in a manner of elementary geometry. Hifus, t
simulator is not suitable for investigating phenomena of the microscopic system, where the
guantum effects are significant. In contrast, this module is very suitable for simulating AFM
images of semiconductor devices oif]] scale order and biologicalacromolecules.

GeoAFM estimates a result from only the information of the geometry of the tip, the sample
material and the AFM imageBecause the module derives a result without any physical
consideration such as an equation of motion, users can alinaittated results very rapidly,
within a few seconds.

4.1 Outline of themechanism and theomputingmethod in thanutualsimulation of the
tip, the sample material and the AFM image.

The GeoAFM describes the all data as heights on thediw@nsionalky-plane, where the
data include the geometrical data of the tip, the sample material and the AFM image. In other
words, the twedimensional xyplane is divided into squarege.g. 1 A x 1 A), and then a
geometrical data is described by heights on thosaregu

In the GeoAFM,we may use a tip of pyramidghape registered in tlatabase. Then, the
pyramidictip data is described as a discrete solid body on the squares. Thusdthe treats a
nearly pyramidicsolid shape composed aifiboid blocks.

Whena tip or a sample is a crystal or a polymer with a lot of atoms, the solid shape made by
the atoms is also considered to be composed of cuboid blocks.

As seen in
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Figure 69 and Figure 70, we define the tip shape data @gx,y) and the samplshape
data as S(x, y) .

S(x,y)
A

>
X

Figure 69 Tip shape data T (X, Y) . Figure 70 Sample shape dataS(X, Y) .

In this case, when the tip contacts the sample, the positithre top of the tip is apart from
the sample surface due to the tip shape its@dfufe71).

T(x.y")

S(x.y) A

0

>

Figure 72 Trajectory of the top of the tip when
Figure 71 Appearance whenthe tip contacts the sample. the tip scans on the sample surface.

Considerting the above effect, the tip scans on the sample sufigoee 72 shows the

trajectory of the top of the tip, which becomes duller thartrilne shape of the sample surface
due to the tip thickness.

In summary, the estimated AFM imadg(X, y) is calculated by

1(xy) = WS(HX',W y)-T(X, y)l.

In a similar manner above, the estimated sample si&pey) is calculated by
S(x,y) =maxl (x- X, y- ¥) +T(<, Y],

usinig the tip shapel (x,y) and the AFM imagel (x,y) .
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In a similar manner above, the estimated tip sh@jf®, y) is calculated by
T(xy)=maxS(x+x,y+y)- 1(x,y)],
usinig the sample shap&(x,y) and the AFM imagel (X,Y) .

4.2 Caseexample of GeoAFM

As an example, we simulate the estimated AFM image by the use of a pyramidic tip and a
Acoldlaggd data as a sampl e.

We choose a pyramidic tip shownkigure 73. Figure 74 shows the molecular structure of
a polymer chain of the collagdrelg.

Figure 73 A pyramidic tip .

Figure 74 The molecular structure of Figure 75 The estimated AFM image.
a polymer chain of the collagerlclg.

Using the tip ofFigure73 and the sample dfigure74, we obtain the estimated AFM image
shown irFigure75.

As an example, we simulate the estimated sample shape by theaysgramidic tip and an
AFM image which has been obtained in the previous subsection.

We choose a pyramidic tip shown kigure 76. We choose the AFM image given in the
previous subsection shownkigure77, as an iput AFM image.
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Figure 76 A pyramidic tip .

Figure 77 The AFM image of a Figure 78 The estimated sample
polymer chain of collagenilclg. shape.

We obtain the estimated sample shape showv#gre 78.

As anexample, we simulate the estimated tip shape by the use of a sample shape given in
the last subsection and an AFM image given in the previous subsection.

We choose the sample shape given in the last subsection sh&iguia79, as an input
sample shape. We choose the AFM image given in the previous subsection skigumag0,
as an input AFM image.

Figure 81 The estimated
tip shape.

Figure 79 The sample shape of a Figure 80 The AFM image of a
polymer chain of collageniclg. polymer chain of collageniclg.

We obtain the estimated tip shape showRigure81.

4.3 Usersguide how touse GeoAFM

Here we show the concrete operation procedures corresponding to the previous section.

Table 3 The operation procedure to simulate an AFM image from the tip shape and the sample shape.
Procedure Input example
Click [File] A [New].
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[Create newproject] dialog opens. Type "geoafm_test001" as [Project name].
Click the [Setup] tab in [Project Editor].

Right click on the [Component] item, then

choose [Add Tip]A [Pyramid].

Define a parameter of the tipin the [Set Type“32.0" as [angle (deg)].

Pyramid Angle] dialog.

Right click on the [Component] item, then Doubleclick [collagenlclg] in the [Sample DB
choosgAdd Sample]A [Database] View].

Right click on the main screen to show a

context menu.

Context menuA [GeoAFM] A [Set GeoAFM Type "1.0" [A]in the [Set Resolution] dialog.
Resolution]

Context menuA [GeoAFM] A [Show The estimated AFM image is simulated and
Simulated Image] displayed on the screen.

Remove a tick from the context menw

[Show Tip]

Remove a tick from the context menw

[Show Sample]

Context menu A [GeoAFM] A [Export Save the estimated AFM image as
Simulated Data] "collagenlclg _afm_image.cube".

4.3.bSimulation of the sample surface, from the tip data and the observed AFM image

Table 4 The operation procedure to simulate a sample surface from the tip shape and the AFM image.

Procedure Input example
Click [File] A [New].
[Create new project] dialog opens. Type "geoafm_test002" as [Project name].

Click the [Setup] tab in [Project Editor].
Right click on the [Component] item, then
choose [Add Tip]A [Pyramid].

Define a parameter of the tipin the [Set Type "32.0" as [angle (deg)].
Pyramid Angle] dialog.
Right click on the [Component] item, then Choose "collageficlg_afm_image.cube".

choosd Add | mag.e] Y[ Fil e’

Right click on the main screen to show a

context menu.

Context menuA [GeoAFM] A [Set GeoAFM Type "1.0" [A] in the [Set Resolutiomlialog.

Resolution]

Context menuA [GeoAFM] A [Show The estimated sample shaple is simulated ant
Simulated Sample] displayed on the screen.

Remove a tick from the context menw

[Show Tip]

Remove a tick from the context menw

[Show Image]

Context menu A [GeoAFM] A [Export Save the estimated sample shape as
Simulated Data] "collagenlclg_sample.cube".

4.3.cSimulation of the tip surface, from the sample data and the observed AFM image

Table 5 The operation procedure to simulate a tip shape from the sample shape and the AFM image.

Procedure Input example
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Click [File] A [New].

[Create new project] dialog opens. Type "geoafm_test003" as [Project namel].
Click the [Setup] tab in [Project Editor].

Right click on the [Component] item, then Choose "collageiiclg_sample.cube".
choose [Add SampleR [File].

Right click on the [Component] item, then Choose "collageiiclg_afm_imageube”.

choose [Add I mage] Y[ I

Right click on the main screen to show a

context menu.

Context menuA [GeoAFM] A [Set GeoAFM Type "1.0" [A] in the [Set Resolution] dialog.
Resolution]

Context menuA [GeoAFM] A [Show The estimated tip shaple is simulated and
Simulated Tip] displayed on the screen.

Remove a tick from the context menw

[Show Sample]

Remove a tick from the context menw

[Show Image]
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Chapter 5 A Method for Investigating Viscoelastic Contact Problem

[Caution: Contents of this section concern ongoing research studies. Thus, we may modify
the contents of this setion in the future in revised versions of this guidebook.]

5.1 A brief review of the JKR (JohnsttendallRoberts) theory

R . At first, we conside an adhesive force
i = betweena sphere of a radil8 and an infinite

i flat surface that belongs to a seimfinite solid

as shown inFigure 82 We assume that the

| sphere is elastic but it has no viscous
characteristic. By contrast, the sémfinite solid

i ; is viscoelastic and its surface tension is given by
.

Figure 82 An adhesive force between a sphere o

radius R and an infinite flat surface that
belongs to a seminfinite solid.

According to the JKR theory, we can write down a forkce and a distanced between
the sphere and the solid as follows:

F=4F (x*- x?),

and

d=d,(3¢ - 2Jx).

A parameter X found in the above two equations represents a dimensionless quantity. It is in
proportion to a contact area of the sphere and the solid. Moreover, it satisfies a condition

6% ¢ x. This implies that the tip is not in contact with the samplgface under
x<623(=0.303.

Furthermore, F, and d,, are given as follows:

F.=308,
2
dO:a';’
3R
/3
a9y R’F 0
@ g -
¢E =
1 _1-s5° 1-s,°
*_ + ’
E E, E,

where E, and E, r epresent Youngds modud, iandosfreptesest t i p an
Poi ssonds ratios of the ti @ representsstecgntaceagrear espec
at a zeo load. That is to say, when the tip goes down below the surface of the sample, and the
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adhesive force of the surface tension and the repulsive force of the elasticity cancel each other
out with the tip, the area of their contact is equabip.

In fact, the parameteX is given by x=al/a,, where a represents the area of the

contact between the tip and the sample surface. Thus, when the force applied to the sphere ( the
tip) is equal to zero, the relatiox =1 holds. Because of these facts, the range of the

parameter X is given by 6% ¢ x¢1 under the process of the tip being in contact wity the
sample surface.

We show graphs ofF /(4F.) = x*- x¥? and F/(4F.)=x*- x¥? as follows.

F/(4F.) Figure 83 shows a graph of
o x  FI4F)=x>- x¥2 where we let
6723 04 0.6 0.8
o the upward force of F/(4F,)
) correspond to the positivdirection.
0.1 In the graph of Figure 83
' F /(4F,) is always negative. This
—0.15 implies the following. The force
tha the seminfinite solid (the
_02 sample) applies to the sphere (the
tip) is always attractive.
-0.25

Figure 83A graph of F/(4F.) =x’- x¥?

Figure 84 shows a graph of
/60 dld, =3x*- 2J/x, where we let the
downward displacement correspond to

05 the positive direction. Thusx =6 %2

is a critical point where the sphere (the
tip) is contact with the senrmnfinite
623 04 0.6 0.8 solid (the sample). At this critical point,
the surface of the sangrises from its
originl level. In contrast, when the
relation Xx=1 holds, the sphere (the
-1 tip) sinks  deepest into  the

semtindefinite solid (the sample).
Figure 84 A graph of d// d, =3x%- 2Jx. ( ple)
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I

: - Figure 87 A state where the tip
Figure 85 A state where the tip is Figure 86 A state where the tip is sinks deepest into the sample
apart from the sample surface contact with the sample surface

Figure 85, Figure 86 and Figure 87 represent a sta where the tip becomes close to the
sample surface, state where the tip is contact with the sample surface, and a state where the tip
sinks deepest into the sample, respectively. At the moment when the tip becomes in contact with
the sample surface, the sample rises frororiginal level as shown iRigure86. Then, the tip
sinks into the sample because of the adhesion force that the sample causes. However, as the tip
sinks into the sample deeper, théhesion force becomes weaker. When the adhesion force
becomes equal to zero, the tip goes down deepest below the original level of the sample surface.

An outline of the JKR theory, which describes the state of the tip in contact with the sample,
is showna b ov e . On the other hand, when the tip is
intermol ecul ar force works between the tip and
intermolecular force briefly in the following.

To obtain H a ma kr dorcé, dirst,iwe assume the eondwadn adler Waals
potential between two atoms. Second, we carry out an integral of the potential over the
macroscopic volume of solids. Then, we obtain the interaction between two solids.

First, we assume that the Londean der Waals is given by
/
ré’
where r represents the distance between two atoms. The pararheteharacterizes the
strength of the interaction between two atoms, so thatlepends on the kinds of two atoms.

As shown above, for the derivation of Hamaker
repulsive term, which the Lennaddnes potential includes.

Assuming the above potential between two atoms, we carry out trgraintever the
macroscopic volume of two solids and we obtain the total energy as follows:

q*/

E=- njvl risz 6 '

Vi A7) r
where ( represents the number of atoms per unit volume. If we consider a sphere of a radius
R and a semindefinite body as the two solids, we can evaluate the total energy as follows:

AD
E@ ——.

12d

where A=p®g°/ and D =2R. Moreover, d represents the shortest distance betweenthe

two solids. In other wordsd represents the shortest distance between the surface of the
sphere and the surface of the sémdiefinite body. To obtain the above approximation, we

assume D > >. According to the above result, we can estimate the attractive force
caused by the interaction between the two solids asfollows:
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At last, we introduce the Hamaker constant, which depends on the kind of the material.
Writing down the Hamaker constants of the two solidsHs and H,, the following relation
holds:

A= JHH,.

5.2 Transition between a state where van der Waals force works and a state where the
JKR theory is effective

I n the previous section, we explain the JKR
Here, we call our attention to the following fact. These modats handle systems Btatic
equilibrium only. In other words, these models can only deal with the tip and the sample in
static equilibrium. Because both the models of the JKR theoryHsmdna k er 6 s i nt er mo | ¢
force do not include timdependent diffemtial equations, which describe the dynamics of the

tip, they can hardly predict time evolution of the system.

Thus, if we discuss the dynamics of the tip and the sample with the models of the JKR
theory and Hamaker 6s i nt e roouzd ethewn mezhanisrh dor ¢ e | W €
explaining their time evolution. Hence, in the SPM simulator, we assume that the tip moves at a
constant velocity while the tip is sinking deep and and going upwards inside the sample.

From now on, we follow the movements of tiiye approximately according to the models
of the JKR theory and Hamaker 0s i ntermol ecul ¢
quantities.
D This variavlie represents a displacement of the tipzindirection. We let the
downward displacement be positive. Moreover, we assume that a change of this variable is
caused by deformation of the cantilever. We can observe this physical quantity in direct
during the AFM experiments.
d This variable represents the distance between the tip and the sample. We let a
downward change ofd be positive. The interaction between the tip and the sample
depends ond. We cannot observe this physical quantitydinect during the AFM
experiments. Thus, to obtaia/, we have to compute it out of other physical variables.

5

To let discussions be simple, we follow the movement of the tip step by step as follows.
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=0 [The first step]
~ As shown inFigure 88, the tip and the sample are in static

~ A
_‘\ A, equilibrium att=0. A force caused by the elasticity of the
P i nter mol ¢

hy cantilever and Hamaker 6s i
this step, we write down the displacement of the cantilever as

O, D, (>0). Moreover, we write down the distance between the
tip and the sapie as d}, (<0).

AN

Figure 88 The first step.

0 [The second step]
Ll As shown inFigure 89, we let the tip becomes close to the

_______ 4 sample gradually after the time=0. During this process, the
force caused by the elasticity of

\__D_ A . intermolealar force are balanced.
AN

Figure 89 The second step.

[The third step]
As shown inFigure 90, the tip becomes in contact with the
sample surface. We describe the time variable of this moment as

h, tg. At this moment, we write down the displacement of the

\ As cantilever asD; (> 0) . Moreover, we write down the rise of the
sample from the original level ag(<0). This rise is caused
& y by the adhesive force , whose origin is sugface tension of the

S\ \\\\\\\\\\\? sample.

Figure 90 The third step.

[The fourth step]
The tip is sinking into the sample gradually. During this process, the force caused by the
elasticity of the cantilever and Hamaker ds i nt

the sample arm static equilibrium.
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[The fifth step]
As shown inFigure 91, the tip sink deepest into the
sample. At this moment, the force caused by the elasticity of
t he cantilever and Hamaker 0s i nt
each other out, so that the force appliedhe tip is equal to

zero. We write the time variable at this moment tas
Because the force applied to the tip is equal to zero, the
relation D=0 holds obviously. We describe the depth of
the dent made by the tip sunk into the samplezgé>0).

Figure 91 The fifth step.

[The sixth step]
Aftre the time t., the tip is pulled off from the sample gradually. Both the force caused by

theelasi city of the cantilever and Hamaker 6s inte
sample.

[The seventh step]
_______ As shown inFigure 92, the tip becomes apart from the

sample. We describe the time variable at this momertf,agt
————— hy  this moment, we write down the displacement of the cantilever
\ A as D,(>0). Moreover, we write down the rise of the sample
from the original level asa,(<0). This rise is caused by the
& adhesive force , whose origin is the surface tension of the

& \\\\\\\\\\*\% sample.

Figure 92 The seventh step.

[The eighth step]
From the timet,, the tip is leaving the surface of the sample gradually. During this process,

the force caused by the elasticity of t he <can
balanced, so that the tip and the sample are in static equilibrium.

Regarding the whole process as a succession of these eight steps, we understand that the
transition between a state where Hamaker s i nt

adhesive force works according to the JKR theory occurs at thetfjimand at the timet .
Thus, we examine the behavior of the tip at the titgeand at the timet, precisely.

At first, we consider the behavior of the tip at the tife Let us think the following
function f(t,d):
f(t,d) = kD- AD 1 AD 1

— —=k(h,- vt+d)- ——=.
12 ¢? (y a) 12 o?

Just before the tip becoming in contact with the sample surface, the refafipd) =0 has to

hold. Here, we pay attention to the faot<0. On the other hand, at the timtg , if the tip

becomes in contact with the sample surface because of the adhesive force, the luasf
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to change to a great extent. The reason why isllasvi The tip sticks to the sample because of
the adhesive force, so thal is determined by the JKR theory. Thus, the valuegbfis
nothing to do with the conditionf (t,d) =0.

This implies the following. Even if the value af changes a little at the timé,, the
value of the potential of the interaction between the tip and the sample never changes and it
corresponds to a stationary poiRtom these discussions, we understand that we have to require
not only the condition f (t,d) =0 but also the following condition at the timi, :

Hit,an=o0.
¥ (t,d)

We can obtaind, , whichsatisfies the above conditions, in an exact expression. From
Ef(t1d):k+£i3=01
it 6 o

we obtain
/3

q :_éADg
. ¢ 6k +

Moreover, because off (t,a;) =0, we obtain

_h 62’3éADg”3
® v 4cgk =

From now on, we assume that a conditiM|>|dB| holds in advance. From this
condition, the tip has to be apart from the sample at the initial timé. By contrast, if we
assume|d,| ¢|ad;| at t=0, the tip is in contact with the sample surface #iairtime, so that
we cannot carry out numerical simulation.

The value of g, given by the above equation is a critical distance for the transition

A

bet ween the model s of Hamaker és inteemfol ecul ar
the system is governed by the JKR theory with the adhesive force. Thus, the tip has to jump

from the distanced, to the distanced, immediately. In the following paragraphs, we

explain how to computeﬂ’~B :
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Figure 931 n t hi s figur e, we pl
force and the adhesive force induced by the JKR theory. Tl

horizontal axis represents d , the distance for the
interaction between the tip and the sample. The vertical ax

represents F . the interactive force between the tip and th
sample.

Obviously, the point(a;,F;) i s on t
we consider a tangent |

In Figure 93, we pl ot Ha make

intermolecular force and the adhesive
force irduced by the JKR theory. In
Figure 93, the horizontal axis
represents o, the distance for the
interaction between the tip and the
sample. The vertical axis represents
F , the interactiveforce between the
tip and the sample. A moment , when
the tip becomes in contact with the
sample,corresponds to the coordinates

(a5, Fs) -

he curve of Hamaker 6s
ine to the c(dNp of

The condition (u/ ut) f (t,d) =0 lets the slope of the tangent line be equal-t&. Hence,

we obtain the equation of the tangent line as
F=-k(d- g;)+F;.

Moreover, we describe the poir(ﬁB,IEB) , where this tangent line and the curve of the

JKR theory intersect. Then, we understand that

the tip jumps @pnto JB immediately

when the tip becomes in contact with the sample. The reason why is that tleefetestof the
cantilever - k(d- d;) cancels out the the difference of the forces betwégnand F,

exactly. This fact tells us that the change of the interaction between the tip and the sample

depends othe slope of the tangent line k.

We have just given a

di scussi on, whi ch

intermolecular force into the model of the JKR theory at titge when the tip becomes in

contact with the sample. We can apply a similar discussion to the transiton from the model of
the JKR theory into the

sample surface.

At the moment when the tip leaves the sample surface, the behavior of the tangent line,
whose slope- k causes the transition of the interaction, relies on whether the spring constant
k is large or not. In other wordshe behavior of the tip depends largely on whether the
cantilever is soft or hard. In the following section, we explain this fact with concrete examples

and numerical calculations.
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5.3 In the case where the cantilever is soft

In this section, we examinthe behavior of the tip and the sample surface with a soft
cantilever. We follow the time evolution of the tip and the sample with numerical calculations.

First, we pay attention to the following fact. When experimental researchers observe
softmaterials wth the AFM , for example, molecules of proteins and DNA, they prefer soft
cantilevers whose spring constants are less than 0.5[N/m]. The reason why is to prevent
damaging samples like cells and other soft materials with the tip. Thus, instruments makers
aggressively provide soft silicon nitride cantilevers whose spring constants are in the range of
0.02 to 0.08[N/m].

If we let the spring constant of the cantileber be small, we face the problem that a frequency
of the cantilever oscillation becomes sma&llthough the instrument makers try to develop
high-Q cantilevers, which have small spring constants and high resonant frequencies, they do
not still succeed in making such highcantilevers.

From the above discussions, we understand that we have to assume the cantilever of the
small spring constant for the AFM experiment of the viscoelaticity of the soft materials. In
Table6, we show typical physical quantities for the AFM experiments with a soft cantilever and
a soft material, for example, a molecular of a protein.

Table 6 Typical physical quantities for the AFM experiments with a soft cantilever and a soft material, for
example, a molecular of a protein

Physical quantities Values

A distance between the tip and the sample at h, =5.08 10 °[m]
t=0

A velocity of the cantilever v=453 106[m/S]
A density of the tip (with assuming SiO, ) r =223 10kg/m’]
A radius of the tip R=253 108[m]

A spring constant of the cantilever (with k=09 N/m|

assuming the soft cantilever)
Hamaker constant (The tip: with assuming H, =53 1020[J]

SiO,)

Hamaker constant (The sample: with H, =531029J]
assuming:SiO, )

A surface tension (The sample: one and a hal g =0.10§N/m]
times larger thanwater)

Young modulus (The tip: with assuming E, =7.653 10°IN/m?]
Sio,)

Young modulus (The sample: with assuming E, =7.65° 101°[N/m2]
Sio,)

Poi ssonds ratio (The 5,=0.22

Sio,)

Poi ssonbés ratio (The 5,=022

Sio,)
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From now on, we follow the eight steps, which we define in the previous section, one by
one. Here, to understand the discussions at ease, we plot the gra@ai$-9f f or Hamaker 6s

intermolecular force and the adhesfgece of the JKR thay in Figure94.

F [N]
i ‘ 0 o5 [m]
—4x 2510710 x10710

Figure 94 The graphs of (d,F) f or Hamakerés intermolecular force and t
theory.
To | et the graphs of Hamaker 6s intermolecul a

theory overlap edt other properly as shon iRigure 94, we have to adjust the Hamaker
constantsH,, H, and the surface tensiog precisely. This fact implies that we cannot
choosepreferable values a$i1,, H, and g at will for the simulation. If we choose the
values of H, H, and g wi t howu't adjusting them, the graphs

force and the adhesive force of the JKR theory hardly overldp @haer properly as shon in
Figure 94. Therefore, when we carry out the simulation, it is possible that we have to adjust

these physical quantitie$d,, H, and g by trial and error many times.

For the first step, we comput®, and g, at t=0. Remenbering the functiorf (t,a)
that we define in the previous section, we derigle which satisfies f (0,0) =0 at t=0.
Thus, what we have to do is just only computiay which satisfies f (0,4) =0 with
numerical calculations. However, because the equafi¢d,d) =0 may have two omore
roots for d, we have to be careful for choosing a suitable root.

If the variable of the distanc&’ has two or more real roots, we have to choose the one
whose absolute value is largest €. Thus, i f we apply Né&wtonods r
numerically to the equationf (0,d) =0, we may not notice the true), . Therefore, when we
solve the equationf (0,d) =0 for obtaining & numerically, we have to come up with new
ideas for the numerical algorithms. In this example, we obtain
d, =-4.983 10°[m],
and
D, =h +d, =1.68° 10 m].
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Next, leaving aside the second step, we consider the third step. We mention in the previous
section that we can describg and t; in algebraic exact expressions, whegg and tg

correspond to the tip becoming in contact with the sample. Thus, subgtjibysical quantities
of Table6 into these exact algebraic expressions, we obtain

a, =-9.41310'Tm],

and

t, =7.972 10 [s].

Moreover, becausef (t;,a;) =0 holds at the timet; for the function f(t,d) defined in
the previous section, we obtain

D, =4.71310'[m].

Looking at the values ofd, and @, obtained above, we confirm that therelation
|0’A| >|dB| holds. Thus, at the initial timé¢ =0, the tip has to be apart from the sample surface.

To let the condition|a;| >|0’B| hold, we have to carefully adjust the initial distance between
the tip and the sampldy, and the spring constant of the cantilever If we choose a soft

cantilever, whose spring constakt is too small, we have to let the value b large enough
or else the cantilever bendsdbhaand touches the sample surface at initial time.

Here, we compute thea’~B, which is obtained by the transition of interactions at titge
according to the last figure shown in the previous section. This imgplaswe solve the
following equations:

~ AD 1
K@, - d)- P22 aF (- X2
(B B) 12 d2 C( )l

B
d, =a,(3¢ - 2Jx),
and
62°¢x¢l.
We substitute the numerical value af obtaine before into the above equations. From some
numerical calculations, we obtain
Xz =0.995,
and
d, =1.703 10" ]
Moreover, we obtainBB as
D, =h, - vt, +d, =1.583 10°[m .

Here, we go back to the second step. From the above calculations, what we have to do is
just numerically computing the value af , which satisfies
f(t,d)=0 (0¢"tcCty),
where the functionf (t,d) is given in the previous section. We pay attention to the following

fact. If there are two or more real roots fof, we choose the one whose absolute value is
lagest.
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Next, we consider the fourth step. At the timyg, the tip becomes in contact with the

sample surface. Here, we examine the process of the tip sinking into the inside of the sample.
Let us define the following functiorg(t, X) :

9(t,x)

=kD+4F,(x*- x¥?)

=k(h, - vt+a) +4F_(x* - x¥'?)

=k[h, - vt+d,(3x* - 24/X)] +4F.(x* - x*'?)

for t2 t;7 and x,7¢ x ¢ 1.

For a given value of the timé, we compute numerically the variabb¢, which satisfies
g(t,x) =0. If we obtain the value of the paramet®r numerically, wecan computeF and

d, which are described in algebraic exact expression¥ dah the previous section. Here, we
pay attention to the following fact. For a given certain valud ,ofhe equationg(t,x) =0

may have two or more roots for the variabke If there are two or more roots fox, we
choose the one that is larger thag (= 0.999 obtainedbefore.

We describe the time, whex =1 holds, ast.”. This value of the timet.’ corresponds
to the sixth step. At the timé.’, the force applied to the cantilever is equal to zero. Thus, after

the time t.’, the cantilever rise upwards at the constant veloeity. From numerical
calculations, we obtain

t. =1.15% 10 7g],

and

a. =1.75% 10" [m].

Moreover, obviously, we obtairD. = 0. Here, we plot the time evolution of the cantilever for
0¢t ¢t.7in the following figure.

Figure 95 shows a graph of

i A the time evolution of D for
B _
octet.
1.0x107°
" -
AA t
0 5.0x107* tg tc

Figure 95 A graph of the time evolution of D for 0Ct ¢ t.".
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5 Figure 96 shows a graph

" of the time evolution ofd
t
5.0x107* th tc for OCt ¢t
0
-2.0x107°
Oa

Figure 96 A graph of the time evolution of @ for 0¢t ¢ t.7.

5 Figure 97 shows an
5 enlarged graph of the time
evolution of d  for
tCtet.”.
o8
1.65x10712 t
70)(]0_4 tg tc

Figure 97 An enlarged graph of the time evolution of a for

tg CtCt.”
v Figure 98 shows a graph of the
s time evolution of (d,F) for
Sa OB o octet..
-5x101°
-1x107°
Figure 98 A graph of the time evolution of (d,F) for
octet.”

Because the interactive force applied to the cantilever by the sample is always equal to
- kD, we can regard the graph of the time evolutionldffor 0¢t ¢ t.7 as the graph of the

time evolution of the interactive force applied to the cantilever by the sample. Looking at the

66



above graphs of the time evolution af for 0¢t ¢t.7, we feel thatd hardly changes
during tg ¢t ¢t.” when the adhesive force is dominant for the interaction between the tip and
the sample. However, looking at the enlarged graph of the time evolutioh &r t; ¢t ¢t

we notice thatd becomes larger gradually with the tip sinking into the sample deeper.

Next, we consider the seventh step. For the timiet.’, we numerically computeX that
satisfies the conditiong(t,x) =0, where the functiong(t,x) is given before. Here, we pay

attention to the following fact. If there are two or more roots Xgrwe choose the largest one
as a proper solution.

If we compute X numerically as letting the time variablie be larger thant.” gradually,
we find a certain timet,? after which , that is to say(>t,)’ we cannot find a root oX for

the equationg(t,x) = 0. Thus, at the timet,’, the tip becomes apart from the sample surface.
From numerical calculations, we obtain
t, =1.25% 107s],

X, =0.662,
a,=-6.79%10 11[m] ,
and

D, =5.08° 10°[m] .
Here, we show the movement of the cantilever@€t ¢ t,* as graphs.

Figure 99 shows a graph

A of the time evolution of D
for OCt ¢ty
Ag
1.0x107°
Ag
Ap t
0 5.0x107% tg tc

Figure 99 A graph of the time evolution of D for 0¢t ¢ t,".
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Figure 100 shows a graph

5 ¢ of the time evolution ofd for
C _
octet,™
op
1.65x10712
g tc

1.5%1071°

Figure 100Agraph of the time evolution of @ for 0¢t ¢t,%

Figure 101 shows a

. 5 graph of the time
: . . ) _
-4.0x1071° -2.0x1071%  §p i evolution of (d,F)
for OCtCt,"
-1x1078 |
-2x1078 ¢

1

Figure 101A graph of the time evolution of (d,F) for OCt ¢t "

The above graph ofd,F)for O0¢t ¢t,’ coincides with experimental results well. Thus,

we can consider that our model is a good approximation and it describes the behavior of the tip
sinking into the sample and rising upwards out of the viscoelastic sample exactly.
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Figure 102 An example where the tif

cannot leave the sample surface.

our model.

V(t—(ty—te))

However, thinking about the value dT)D obtained

by numerical calculations, we understand that our model
hardly describe the process of the tip being detached
from the viscoelastic sample surface. In fact, our model
cannot follow the phenomena of detachments of the tips
at all. This is becausee obtain D, =5.08® 10 *[m]

numerically and it is much larger than the initial distance
of the tip and the sampldy, =5.0% 10°[m]. Figure
102represents this situation of the cantilever, the tip and
the sample at the timé,”. Looking atFigure 102, we

notice that the antilever rises up far beyond the initial
position. This implies that we cannot let the tip become
apart from the sample surface under the framework of

Let us discuss this point more
precisely. InFigure103 we describe the
8 5 transition of the interactive force

going to far away!

S bet ween Hamaker 6s

B force and the adhesive force of the JKR
' theory. At the timetg’, the tip jumps

from a, to 673 according to the

“ KR tangent line whose slope is equal to

- kK. Here, we pay attention to the
following fact. Because the slope k

is very small now, the tangent line is
nearly equal to the horizontal line. Thus,

Figure 103 An example where the transition hardly occur. at the timet,? the tip jump fromd,
force of t ~

fomt he adhesi ve
intermolecular force.

to dy, which is very far fromd, .

Therefore, the tip has to go far away at the titpe

The above things are the reasons why our model hardly describes the detachment of the tip
from the sample surface. Looking Bigure 103 we notice tht the problem is caused only by
geometrical arrangements of the graphs of
of the JKR theory and the tangent line with slope of the spring conktant

To avoid this problem, the solkeeFemAFM and LigAFM take the following treatments for
the simulation of the dynamics of the viscoelasticity between the tip and the sample:

The FemAFM stops the simulation at the tirtig? and at the displacement of the sample

surface df, . Thus, the FemAFM never compu@, numerically.

The LigAFM computes the successive displacemg,glt at the timet,” and at the

displacement of the sample surfacg. If the displacemenﬂD is not larger than the
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initial distance ho, the LigAFM includes HD in the results of the simulation. However, if

a, is larger than the initial distanch,, the LigAFM stops the simulation atf, .

5.4 In the case where the cantilever is hard

In the previous section, we consider the case where the cantilever is soft and piiat out
the following problem may occur. That is to say, the tip cannot leave the sample surface. By
contrast, if the cantilever is hard enough and its spring constant is large enough, the problem
never occurs and the tip always leaves the sample surfacge model. Thus, if we use a hard
cantilever, it is safe to say the whole process of the tip and the sample is consistent and we do
not need to worry about the problem mentioned before.

Indeed, using the physical parameters showrainle 7, we obtain the graph ofd,F) as
shown in Figure 104 and we understand thaur model is consistent. Ifigure 104 the

transitions froma to 0’ and from @, to dD is realized with the tangent line whose

absolutevalue of the slope is quite large. Thus, as showigime 104, if the absolute value of
the slope of the tangent line K is large enough, our model of the tip and the sample never
causes the problem.

Table 7 Typical physical quantities for the AFM experiments with a hard cantilever and a soft material

Physical quantities Values
A distance between the tip and the sample at h, =5.0% 10 °[m]
t=0

A density of the tip (It is slightly larger than r =2573 1§[kg/m3]
that of SIO, .)

A radius of the tip R=2.53 10

A spring constant of the cantilever (with k =1000[N/m]
assuming the hard cantilever)

FN]

1.0x10"%0

Figure 104A graph of (d,F) using a hard cantilever
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5.5 Difficulty of adjusting physical parameters

So far, we discuss the model that describes the dynamics of viscoelaticity between the tip
and the sample according to Hamaker o6s inter mol
theory. In our model, it is difficult for adjusting the physical parargeproperly. For example,
if we choose the values of the Hamaker constants and the surface tension without any
adjustment of them and plafd, F) , we obtain a graph as shownHigure105. In Figure 105
graphs of Hamaker 6s intermolecular force and
overlap each other properly. Then, if we draw the tangent line with the slop&ofat a, it
never intersects with the curve of the adhesive force of the JKR theory, so that the tip cannot
become in contact with the sample surface.

The reason why this problem occursrcéadt hat th
the curve of the adhesive force of the JKR theory are independent of each other. Both the curves

are determined with the physical constarlty, H, and g, and these constants are
independent of each other. Because there is no dependence between Hamaker ddpstants

H, and the surface tensiog, we can choose any values of them at will. Thuscamenot

predict geometrical arrangement of graphs of H
force of the JKR theory at all, when we make théif, F) plots.

Therefore, if we carry out the simulation of the dynamics of the visécgtatvith the
solvers FemAFM and LigAFM, we have to adjust them by trial and error many times and find
their suitable values.

F
0 S
\, JKR
F=—k(8-9;)+F;
Figure 105Gr aphs of Hamaker déds intermolecular force and the adh

overlap each other properly.

5.6 Improving the teatments of the dynamics ofetlviscoelaticity: a prospective
method

As explained above, if we draw the tangent line with the slege to the curve of
Hamaker 6s inter mol ecul ar f orce, it cannot i nt e
JKR theory in general. Thus, the tip cannot become inacomith the sample surface. To
overcome this problem, we consider the model shipure106.
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F Because Hamakerds thi
A the JKR theory are independent of
S each other, we cannot join them
> together without coming up with
new ideas.

o' |0

First, let us think about the

cur ve of Hamaker 6s inte
cut-off force. This curve shows that only
an attractive force works between
JKR molecules both on macroscopic
and microscopic scales. This
_ behavior is proper when the
modified JKR sample is very far from the tip.

Figure 106 A model with the curve of the adhesive force accordir However, — when the_ sample
to the modified JKR theory. becomes clee to the tip on an

atomic scal e, Hamaker 6s intermol ecul ar force i :

Thus, we try to think about the modified Ham
the intermolecular force becomes constant and never stemsgivhen the tip becomes close to
the sample surface in the range of the atomic scale. This implies that we introducedtfie cut

|l ength in Hamaker 6s intermolecular force. This
to describe real physical phenamewell. Then, we consider how to join the curve of the
modi fi ed Hamaker és intermolecular force and t h
together.

As shown inFigure 106, at the moment when the tip become apart from the sample
according to the curve of the adhesive force of the JKR theory, we regard the distance between
the tip and the sample as the -offt length. Then, we add the strengthf Hamaker 6s
intermolecular force at this caaff length to the adhesive force of the original JKR theory, and
we obtain a new curve of the adhesive forceFigure 106 we draw this new curve of the
modi fied adhesive force as a red curve named tI

If we use this new model, we may avoid the problems mentioned in the previous sections.
Implementation of this model to the SRitnulator remains to be solved in the future.
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Chapter 6 Finite element method AFM simulator (FemAFM)

6.1 A model of continuous elastic medium

The solver FemAFM is software for simulating the atomic force microscope (AFM) with
approximating the samplad the tip as models of continuous elastic medium. In the simulation,
we regard each of the sample and the tip as continuous elastic medium consisting of a single
material and assume that the van der Waals foce works between elements of the continuous
elagic medium. By solving the linearly elastic constitutive equations numerically, we examine
total interactive forces between the tip and the sample.

Keywords of theoretical physics that represent simulation methods of the FemAFM are the
van der Waals focand the linearly elastic constitutive equations. Thus, the FemAFM treat
problems with phenomelogical force fields according to the classical mechanics. The price of
this typical feature is that the FemAFM does not consider effects of quantu mechanical
dynanics.

When we use the FemAFM, we have to consider each of the sample and the tip to be
continuous elastic medium consisting of a single material. Thus, even if we want to treat a
complex polymer as a sample, we have to treat it as elastic medium olearsatgrial. We
have to neglect its atomic structure. What we can do with the FemAFM is to obtain average
dynamical properties over the elastic medium with numerical calculations. However, the
FemAFM has the following advantage. It can investigate magoascbhanges of shapes of the
tip and the sample, which are affected by the van der Waals forces, with solving the linearly
elastic constitutive equations numerically.

From these reasons, the FemAFM is suitable for examining macroscopic properties of
sampes. However, the FemAFM cannot carry out microscopic simulations. For example, the
FemAFM cannot simulate AFM images of atomic structures on the sample surfaces. If we want
to simulate SPM images of atomic structures, we need the CG, the MD and the D#elTB. T
FemAFM provides us with convenient tools for simulating macroscopic AFM images of
biopolymers and semiconductor devices, for example.

The FemAFM has the following three simulation modes.

[femafm_Van_der_Waals_force]

Using this mode, we can carry outnsilation of general nenontact AFM images. In this

mode, we can let the tip scan the sample surface with constant hight, plot the interactive
force, from which the tip suffers, on the tglamensional plane, and obtain an experimental
AFM image. At each gat plotted on the twalimensional plane, the FemAFM solves the
linearly elastic constitutive equations numerically and estimate changes of the shapes of the
tip and the sample caused by the van der Waals forces under static equilibrium. Plotting the
interactive forces between the tip and the sample under this static equilibrium, we obtain an
experimental AFM image as a result of the simulation.

[femafm_frequency_shift]

Using this mode, we can carry out simulation of4gontact frequency modulation AFM
(FM-AFM) with obtaining the frequency shift of the oscillating cantilever. In this mode, we
let the cantilever and the tip be oscillating at a certain frequency, scan the sample surface,
and plot the shift of the resonant frequency, which is caused by ¢naatibn between the

tip and the sample, on the twiamensional plane. During the simulation, we assume that

the tip is not in contact with the sample surface. If the tip become in contact with the
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sample surface, the simulation stops immediately.

[femafm JKR]

Using this mode, we can carry out simulation of the contact mechanics between the tip and
the viscoelastic sample. At the ceratin point on the sample surface, we let the tip go down
towards the sample gradually, sink into the sample, and pull it dswiarthis mode, we

can simulate successive processes such as making the tip become in contact with the
sample surface, making the tip be stuck with the sample by the adhesive force, letting the
tip be pushed back upwards outside the sample, and Idt&rigptleave the sample surface.
During the simulation, we can obtain the vertical displacement of the tip and the interactive
force between the tip and the sample as output data. If the tip is apart from the sample, we
assume that the van der Waals foraeks. If the tip is in contact with the sample surface,

we assume that we can describe the dynamics with the JeKesdallRoberts (JKR)

theory.

The user can choose one of t he above t hree
purpose.

6.2 Describig thecontinuous elastic medium with the finite element method

As explained in the previous section, to carry out the simulation, the FemAFM treat the tip
and the sample as the continuous elastic medium and solve its linearly elastic constitutive
equations numerically. The femAFM makes use of the finite element method for solving the
linearly constitutive equations numerically.

How to create FEM meshes of the tip and the sample is as follows. We assume that the tip
and the sample are given as datanolecular structures. First, we let the lowest atom in the
molecules be located at the origin of the Cartesian coordinate systgynz). Second, we
create the projection of the object (the tip or the sample) orxtheplane, so that we obtain a
region, which the object occupies. Third, we perform mesh discretization of the region with a
square lattice, whose edge length is equal fd[angstrom]. Fourth, to each unit cell on the
square lattice of #h Xy plane, we give height of the object. Then, we obtain a surface mesh

model of the object on the twdimensional lattice of thexy plane.

Next, we apply discretization to the height of each unit
cell on the Xy plane with a space step df.0[angstrom].
Then, we obtain a thredimensional mesh of the object with
cubes, whose edge length is equalld[angstrom]. Finally,
we divide each unit cube of sidk.O[angstrom] into five

tetrahedrons as shown #igure 107. Thus, we obtain a
threedimensional finite element mesh of the object with

tetrahedrons.
Figure 107 Dividing a cube into five If an object is given with other data format, which is not
tetrahedrons data of molecular structures, we can gpgphilar process to

it and we can obtain a thregmensional finite element mesh of the object with tetrahedrons.

6.3 Calculating the interactive forces between the tip and the sample and changes of
their shapes with the finite elemet method
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The FemAFMcomputes the longange interactive force between the tip and the sample as
the van der Waals force, which is given by

f(rG) CrCrdV%dVeEQ- Rep Q12 120
2 gho C r12 grlz g

where
H
C:lrl = ! ’
p
[H
CZer: : ’
p

H,, H, represent the Hamaker constants with unit of [J], &g represents the van der

Waals radius that determines the repulsive force in the short range. In the FemAFM, we set
Rep =53,, Where a, =0.5293 10*[m] represents the Bohr radius. Moreover, defining

R.of =20a,, we do not let the van der Waals force work in the case wherés longer than

R..f - The introduction of R, prevents the divergence to infinity for the van der Waals
force and lets results of numerical calculations be stable.

The linearly elastic constitutive equatlocr;s are given as follows:
1 Epfy iiEE)(E)(mcﬁif =0,
1+n 2 1+nl1-2n 2

where E r epresents Youn[g\ldm3] modurepresenhnhst Poi ssond

The FemAFM solves the above two equations simultaneously and obtains displacements of
infinitesimally small volume elementsi and forces actinghroughout infinitesimally small
volume elementsf numerically. We can evaluate a total force that acts on the tip as sum of

all forces acting through the all volume elements of the tip. From this process, we can simulate
an experimetal AFM image. The simulation modéemafm_Van_der_Waals_force] basically
follows this procedure.

6.4 Estimating the frequency shift of the cantilever under the model of the continuous
elastic medium: using a standard formula

In the mode [femafm_frequency_shift], the FemAFM can carry out simulation of
non-contact frequency modulation AFM (FRKFM) image with obtaining the frequency shift of
the cantilever. We explain how to estimate the frequency shift in the following paragraphs.

If we want to evaluate the frequency shift, we have to consider two external forces acting on
the tip. The first one is the force caused by the oscillation of the cantilever. The second one is
the interactive van der Waals force between the tip and the samplg, Whuobtain the
following equation of motion for the tip:

#= - AWESIn(W) - %(z- zo)+%
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where A, represents the amplitude of the oscillation of the cantileV€rrepresents the
circular frequency of the oscillation of the cantilevédxr, represents the spring constant of the
cantilever, M represents the mass of the tip afgl represents the total exterdatce acting

between the tip and the sample. In concrete terg,is a sum of the interactive van der

Waals force between the tip and every volume element of the sample. The constant @gsition

represents the equilibrium position where the spring force of the cantilever and the total van der
Waals force between the tip and the sampl e

The total external forcel, varies as time pr@eds according to the distance between the

C ancd

tip and the sample and the changes of the shapes of the tip and the sample caused by their

elasticity. Thus, to solve the equation of motion for the tip numerically, we have to perform the
following procedure. Weapply the finite difference method for solving the equation of motion

for the tip numerically. Thus, we discretize the time variable with the difference inDmeAt

each time step, we solve the linearly elastic constitutive equatiotie tip and the sample.

Then, we include the effects of changes of the shapes of the tip and the sample in the calculation
of the finite difference method for solving the equation of motion for the tip. This treatment is
valid under the condition th#te changes of the shapes of the tip and the sample occurs quickly
and its time scale is much shorter than the pefid

Moreover, we assume the following fact. The van der Waals force between the tip and the
sample is weak enough, gt we consider it to be the firstder perturbation for the dynamics
of the oscillation of the cantilever. Thus, we assume that the tip never becomes in contact with
the sample surface. If the tip becomes in contact with the sample surface, the FestofEM
the simulation immediately. To judge whther the tip becomes in contact with the sample surface
or not , we utilize S ome notions explained
probl emo.

To estimate the frequency shibr7, we use the following formuldN. Sasaki and M.
Tsukada, Jpn. J. Appl. Phys. Vol. 39 (2000) pp. L1BB337, Part 2, No. 12B, 15 December
2000t

2p _
Dn=- =26 5 (2 Ry,
2pak 2p a
z- Z,=acoy ,

where z represents the distance between the tip and the sample sufade, ., - Z,;,)/ 2

represents a half of the amg#EJkim depresents the h e

resonant frequency of the cantilever ak{(z) represents the interactive force between the tip
and the sample for the distana.

To calculate the frequency shifbr? with the above formula, we rewrite the integral as the
following discrete sum. First of all, we divide the period of the oscillation of the cantilever into
N equal intervals as follows:

We describe the displarent of the tip at each descrete time as
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= Z(t) = Zee——0.

=)= 25 0
From the above p eparatlons we can write dolam as

2k 20 & N = gk N & Fe(B)E ).

Using the above equation and solving the equation of motion for the tip with the finite
difference method, we can compuf®? at ease.

1 l N-1
pp=- 1 Vb aF ()R 2

The FemAFM repeats the above procedure for obtairldsg at each point on the
two-dimensional xy-plane with scanning the sample surface and eventually generates a

frequency shift AFM image.

6.5 Smulating the contact mechanics between the tip and the viscoelastic sample under
themodel of ontinuous elastic medium

In the mode offfemafm_JKR], the FemAFM can carry out tHenulation of the contact
mechanics between the tip and the viscoelastic sample. In the following paragraphs, we explain
how to realize this simulation numerically.

In themode of thgfemafm_JKR], the FemAFM examines the contact mechanics between
the tip and the viscoelastic sample at a certain fixed point on the sample surface. A method of
numerical calculations is similar to that of the mode [femafm_frequency_shiftlhich the
frequency shift is estimated. While we solve the equation of motion of the tip with the finite
difference method numerically, we solve the linearly elastic constitutive equations for the tip
and the sample at each time step and we examine thHibdragin states of elastic materials.

If the dynamics of the tip and the sample makes a transition from the theory of van der
Waals force to the JKR theory, the tip sinks into the sample with the adhesive force at a constant
velocity. We assume that thiglocity is nearly equal to the typical velocity of the oscillation of
the cantilever.

After the system of the tip and the sample makes the transition to the JKR theory, its
dynamics is gover neAd mahsed fa inestigatingiscdelastincongaetc . 5, i
problend .

In the mode of thifemafm_JKR], the FemAFM stops calculations just before the tip leaves
the sample surface. Then, it out puts a data fi

time variations of the displacement diettip along thez -axis and thez -component of the
interactive force between the tip and the sample are recorded in this file.

6.6 Some examples of simulations

In the following sections, we show some examplessiofulations carried out by the
FemAFM.
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In Figure 108 Figure 109 and Figure 110, we explain results of an AFM simulation af
single molecule of Glycoprotein (1clg) on HOPG (Highly Oriented Pyrolytic Graphite) with a
pyramid tip

In Figure 108 we show molecular
structure data of a single molecule of
Glycoprotein (1clg) on HOPG (Highly
Oriented Pyrolytic Graphite). We carry
out the AFM simulation for this
molecular structure data \mit the
FemAFM.

Figure 108 A pyramid tip and a single molecule ¢
Glycoprotein (1clg) on HOPG (Highly Oriented Pyrolytic
Graphite)

In Figure 109 we show an
AFM simulation image obtained
with the FemAFM in the mode of

[femafm_Van_der_Waals_force].
On the twadimensional plane, the
interactive van der Waals forces
between the tip andh¢ sample are
plotted.Looking atFigure109, we
notice that the van der Waals foce
becomes extremely strong in the
area where the tip is quite close to
the sample surface.

Figure 109 An AFM simulation image of a single molecule ¢
Glycoprotein (1clg) on HOPG (Highly Oriented Pyrolytic Graphite)
with two-dimensional view
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In Figure 110, we show
an AFM simulation image
obtained with the FemAFM in
the mode of
[femafm_Van_der_Waals_for
ce] with threedimensional
view. Looking atFigure 110
we notice that the van der
Waals force becomes
extremely strong with being
proportional to the molecular
distance at the power of six in
the area where the tip is quite
close to the sample surface.

Figure 110 An AFM simulation image of a single molecule «
Glycoprotein (1clg) on HOPG (Highly Oriented Pyrolytic Graphite) with

three-dimensional view

Figure 111 A frequency shift AFM image of a single molecule «
Glycoprotein (1clg) on HOPG (Highly Oriented Pyrolytic
Graphite) with two-dimensional view
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In Figure111 and Figure 112,
we explain simulabn results of a
frequency shift AFM for a single
molecule of Glycoprotein (1clg) on
HOPG (Highly Oriented Pyrolytic
Graphite) with a pyramid tip.

In Figure 111, we show a
frequency shift AFM image
obtained by simulation with
two-dimensional view. In this
simulation, we assume that the
cantilever oscillates a00[MHz].
Looking atFigure 111, we notice
that the maximum value of the
frequency shift is about
5.96[MHZz].



In Figure 112 we
show a frequency shift
AFM image obtained by
simulation with
threedimensional view.

value

Figure 112 A frequency shift AFM image of a single molecule of Glycoprote
(1clg) on HOPG (Highly Oriented Pyrolytic Graphite) with
three-dimensional view

In Figure 113 and Figure 114, we
explain simulation results of contact
mechanics between the pyramid tip and
the viscoelastic Si(001) substrate at a
certain fixed point on its surface.

In Figure 113 we show atomic
structure of Si(001) substrate.

Figure 113A pyramid tip and Si(001) substrate

80



7 ’)nE 22

-1.00E-10 -5.00E-11 -7

1
"

Figure 114 A graph of the interactive force between the tip and the sample against the displacement of the tip.
The horizontal axis represents the displacement of the tip. The vertical axis represents the interactive force
between the tip and the sample.

In Figure 114, we showa graph of the interactive force between the tip and the sample
against the displacement of the tip as a result of simulation. Theohtlizaxis represents the
displacement of the tip. The vertical axis represents the interactive force between the tip and the
sample. Because the ranges of both the replacement and the interactive force are too large, we

enlarge a part of original graph as-1.0310'°¢d¢1.0310"° [m] and

-1.2310° ¢ F ¢1.03 10 *°[N] to examine the contact mechanics of the tip and the sample
precisely.

How to interpretFigure114is as follows. We assume that the tip moves along red arrows.
First, the tip moves downwards and becomes in contact with a round part that sticks out from
sample surface. Second, the tip simkto the sample because of the adhesive force. Third, the
tip sinks into the sample deepest and the adhesion force become equal to zero. Fourth, the tip
moves upwards. The FemAFM simulates the movement of the tip numerically just before it
leaves the sapte surface.

In the above example, because the spring constant of the cantilever is too small, a slope of
the tangent line to the curve of the JKR theory is very small and it is nearly horizontal, so that it
cannot induce the transition from the curvelaf JKR theory to the curve of the van der Waals
force. The FemAFM does not simulate how the tip leaves the sample surface. This is because
the transition from the JKR theory to the model of the van der Waals force is often invalid. In
fact, if the springconstant of the cantilever is too small, the tip leaves the sample surface and
move upwards far away.

6.7 Users guidehow to use FemAFM
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Table 8 Procedures for carrying out simulation in the mode [femafm_Van_der_Waals_force]

Procedures

Examples for input fields

Click [File] C [New].

The box [Create new project] appears.
Click the tab of [Setup] in [Project Editor].
Put the cursor on [Component], make a
right -click with the mouse and choose [Add
Tip].

The angle (deg) is required.

Choose [Add Sample} [Database].

Choose the tab of [FBM] in [Project Editor].
Choose [simulation] [resolution].

Look at [Sample][Size] in the tab of [Setup].

Input values for [Tip][Position] in the tab of
[Setup].

Input values for [Tip][ScanArea] in the tab of
[Setup].

With the mouse, put the cursor on the
window displaying the images of the tip and
the sample properly and make a rightclick.
Next, a context menu appears, so that put i
check mark on the item [Show Scan Areal].
Then, the area for scanning is shown in the
window.

Put wvalues for Young¢
Poi s s o i filimensianless]@and Hamaker
constants [zJ] for [Tip][Property] and
[Sample][Property] in the tabs of [Setup].

Put the number for [OpenMP_threads] in the
tab of [FEM].

Choose [simulation_mode].
Click a triangle button for [Calculation] of

[FEM]. )
Choose [Display{C [Result].

Input "testfemafm100" for [Project name].

Choose [Pyramid].

Use the default value 32.0 (deg) and choose
[OK].
Choose [1clgHOPG].

Put 2[angstrom].

Confirm the size of the sample: width w:
66.861[angstrom], depth d: 156.464[angstrom
height h: 23.152[angstrom].

l nput-36X508&0 and z
[Position].
Il nput w=0720, d=01¢€
[ScanArea].

Use the default values, [young] 76.5[GPa],
[poisson] 0.22 and [hamaker] 50[zJ].

Put the number of CPUs for parallel
calculations. (The default number of CPUs for
parallel calculations is equal to 1.)

Choose the mode

of of emaf m_Van_der _ We
Start thesimulation.

Display results of the simulation.

6.7.b How to simulate in the mode [femafm__ frequency_shift]

Table 9 Procedures for carrying out simulation in the mode [femafm_ frequency_shift]

Procedures

Examples for input fields

Click [File] C [New].

The box [Create new project] appears.

Click the tab [Setup] in [Project Editor].
Make a right-click on [Component], and [Add
Tip] appears.

The angle (deg) is required.

Choose [Add Sample} [Database].

Input "testfemafm200" for [Project name].
ChoosgPyramid].
Use the default value 32.0 (deg) and choose

[OK].
Choose [si001].
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Choose the tab [FEM] in [Project Editor].
Choose [simulation]A [resolution].
Look at [Sample][Size] in the tab of [Setup].

Input values for [Tip][Position] in the tab of
[Setup].

Input values for [Tip][ScanArea] in the tab of
[Setup].

With the mouse, put the cursor on the
window displaying the images of the tip and
the sample properly and make a righclick.
Next, a contet menu appears, so that put a
check mark on the item [Show Scan Area].
Then, the area for scanning is shown in the
window.

Put values for Yo
Poi ssonbds ratios
constants [zJ] for [Tip][Property] and
[Sample][Property] in the tabs of [Setup].

Put values for [density] and [spring_constant]
for [Tip][Property] in the tab of [FEM].

ung¢
[ di

Put a value of [surface_tension] for
[Sample][Property] in the tab of [FEM].

Put values of [amplitude] and [frequency] for
[simulation] in the tab of [FEM].

Put the number of [OpenMP_threads] in the
tab [FEM].

Choose [simulation_mode].

Click a triangle button for [Calculation] of
[FEM].

Choose [Display{ [Result].

Put 2[angstrom].

Confirm the size of the sample: width w:
14.28665 [angstrom], depth d: 13.52978
[angstrom], height h: 8.16468 [angstrom].

I npui 0x 8@=@ nd ZzPositdrg. o
d=01¢

Il nput w=0160,

[ScanArea].

Use the default values, [young] 76.5[GPa],
[poisson] 0.22 and [hamaker] 50[zJ].

Use the default values,
[density]2329.0[kg/rB]and
[spring_constant]0.05[n/m].

Use the default value,
[surface_tension]0.108[N/m].

Input [ampitude]150[angstrom] and
[frequency]0.5[GHZ].

Input the number of CPUs for parallel
calculations. (The default number of CPUs for
parallel calculations is equal to 1.)
Choose he mode of
Start the simulation.

of ema

Display results of the simulation.

6.7.c How to simulate in the mode [femafm_ JKR]

Table 10 Procedures for carrying out simulation in the mode [femafm_ JKR]

Procedures

Examples for input fields

Click [File] C [New].

The box [Create new project] appears.
Click the tab [Setup] in [Project Editor].
Make a right-click on [Component] and
choose [Add Tip].

The angle (deg) is required.

Choose [Add Sample} [Database].

Choose the tab [FEM] in [Project Editor].
Choose[simulation] A [resolution].

Look at [Sample][Size] in the tab of [Setup].

Input "testfemafm300" for [Project name].
Choose [Pyramid].

Use the default value 32.0 (deg) and choose
[OK].
Choose [si001].

Put 2[angstrom].

Confirm the size of the sample: width w:
14.28665 [angstrom], depth d: 13.52978
[angstrom], height h: 8.16468 [angstrom].
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Input values for [Tip][Position] in the tab of
[Setup].

Input values for [Tip][ScanArea] in the tab of
[Setup].

With the mouse, put the cursor on the
window displaying the images of the tip and
the sample properly and make a rightclick.
Next, a context menu appears, so that put i
check mark on the item [Show Scan Areal.
Then, the area for scanning is shown in the
window.

Put values for Young¢
Poi ssonés ratios [ der
constants [zJ] for [Tip][Property] and
[Sample][Property] in the tabs of [Setup].

Put values for [density] and [spring_constant]
for [Tip][Property] in the tab of [FEM].

Put a value of [surface_tension] for
[Sample][Property] in the tab of [FEM].

Put values of [amplitude] and [frequency] for
[simulation] in the tab of [FEM].

Put numbers for [ix] and [iy] of
[JKR_position] in the tab [FEM].

Put the number for [OpenMP_threads] in the
tab [FEM].

Choose [simulation_mode].
Click a triangle button for [Calculation] of
[FEM].

I npu# ox 8do=@nd z=060
Il nput w=0160, d=01
[ScanArea].

Use the default values, [young] 76.5[GPa],
[poisson] 0.22 and [hamaker] 50[zJ].

Use the default values,
[density]2329.0[kg/m3]and
[spring_constant]0.05[n/m].

Use the default value,
[surface_tension]0.108[N/m].

Input [amplitude]150[angstrom] and
[frequency]0.5[GHZ].

Input 5 for [ix] and 1 for [iy].

Input the mmber of CPUs for parallel
calculations. (The default number of CPUs for
parallel calculations is equal to 1.)
Choose the mode of
Start the simulation. (Result§ the simulation
are stored in an output file
Afemafm_simul ation_ti

0 i
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Chapter 7 Soft Material Liquid AFM Simulator (LigAFM)

Soft Material Liquid AFM Simulator (LigAFM) is the solver which simulates AFM
experiments in liquidBy usingLigAFM, We can simulate oscillation of a cantilever in liquid,
and compute a resonance frequendle can also simulate a contact between a viscoelastic
sample and a tip, and can compute a force curve.

7.1 Calculation method for simulation of cantilewscillation in liquid

In LigAFM, we treat a cantilever as a one dimensional
elastic beam, illustrated Wyigure 115 The beam extends
in the longitudinal direction of cantilever, and we assume
that the cantilever moves in two ways, that is, oscillates in

M the vertical direction and rotates around the longitudinal
axis.

Figure 115 One dimensional elasti
beam.

The reason that we approximate the cantilever by such a simplified model is explained
below.

The cantilever used in AFM experiment is elongate, and thickness and width is tiny in

comparis®n with length.

In actual AFM experiment, motion of cantilever is ristricted to oscillation in the vertical

direction and rotation around the longitudinal axis.

It may be thought that when we examine motion of cantilever in this model, it is not
necessary to consider a perforated cantileBat.it is not true.Considering the structure of a
cantilever is necessary for calculation of fluid dynamics, as we explain detail at following
section. So we adopt the methid that we consider liquid as incessible viscous fluid,
discretize the cantilever and surrouding space, and then solve fluid dynamics equation
numerically.

h(Z) We examine equations of one dimensional
elastic beam below.The position of the
Z T cantilever in the longitudinal direction is
— 9( denoted byz. Displacement of beam in the
Z) vertical direction at a positiorz is denoted by

h(z), and rotation angle in the direction of

Figure 116 Flexibility of one dimensional elasti counterclockwise is denoted by(z) . So
beam. h(z) expresses vertical oscillation of the beam,

and g(2) expresses rotational oscillation.
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Equations of motion aboutvariable h(z) and a variableg(z) are given next.

rS(z);%h(z) =- lfz—zzga (z):jz—Zh(z)g- 982 D) +F()

N2+ 92 =612 X, a2 +T"(2)
Vi V74

r stands for density of cantilever's material, aB{z) stands for cross section of the

cantilever at the positiorz. When W(z) stands for horizontal width and(z) stands for
vertical thickness at positire , a following relatiorholds.

S(2) =w(z)d(2)

E stands for modulus of longitudinal elasticity (Young's modulus) of cantilever's mat&ial,
stands for modulus of transverse elasticity, ghdstands for damping ratio. The dimension of
g is reciprocal of time.l (Z) stands for second moment of area of the cantilever at position
z, and given by following relation.

1(2) = WA’

F'"4(2) stands for a sum of fluid resistance at positibnand contact force which a tip

recieves from a sampleF"4(z) is given as force per unit lengtif;"%(z) stands for a sum of
fluid resistance at positiorz and torque of contadorce which a tip recieves from a sample.
T"(2) is given as moment per unit length.

Cantilever is forced to vibrate with base excitation in simulation.

Xy cross section In LigAFM, fluid is treated as two dimensional
incompressible viscous fluid. We consider fluid to be
y restricted to Xy plane which is perpendicular ta axis,
X which is along longitudinal direction.X( axis is horizontal
direction, and y axis is vertical direction.) We consider
effect of viscosity in addition, and approximate fluid as stokes

z P fow.

sample
Figure 117 Z axis is along th
longitudinal direction. XY plane
is perpendicular to the z axis.

The reason that we approximate the fluid by such a simplified moebpblgined below.

Motion of fluid is considered to be restricted to the plane perpendicular to the cantilever,
because cantilever which drives fluid is uniformly constructed in the horizontal direction.
Fluid can be regarded as incompressible because fleedsis sufficiently smaller than
sonic speed.

5

5
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,  Fluid can be regarded as stokes flow because a scale of fluid is in the ordercaf] 1
a viscosity term is dominant as compared with a inertia term in fluid motion.

We examine the equation of motion whidominates motion of fluidFirst of all, we

coesider NaviefStokes equation of incompressible fluid in a two dimensional space.
c.Cc 1C C

%+(v®)v = ZPp+V,

r

P&=0
\\/’(x, y) = (v, (X, ¥),v, (X, Y)) stands for a velocity vector field in th&y plane, p(X,Y)

stands for a pressure field; stands for fluid density and? stands for kinematic viscosity.
The kinematic viscosityr? has following relatia with viscosity /7 and density 7 .

m
n=—

r

“We consider the viscosity termDV is dominant as compared with the inertia term

.\ C

V@)V, and approximate thdavierStokes equation by a following Stokes equation.
w_ 1C  C

M

~—~

=- =Pp+nV,
p

.
bQ@=0

Equation of two demensional incompressible fluid can be simplified with use of a stream
function ) and vorticity W.

V. :M1 V. :_%’

w7
w= p‘xvy - Hyvx
Here the equations below hold.

The fluid is assumed to be static in an initial state on simulafidsoundary condition is
set upso that a velocity of fluid coincides with a velocity of cantilever on the surface of the
cantilever where cantilever contacts fluiche fluid is assumed to be static on the surface of a
substrate and at infinityWe solve the equation of motion in flurdhmerically at the condition.
[reference M.Tsukada, N.Watanabe, Jpn. J. Appl. Phys. 48 (2009)035001]

The equation of motion of a cantilever and the equation of motion of fluid explained above
are solved, by being discretized about time and space in siomulA domain of a cantilever
and fluid is spatially divided into cubic meshasd a time variable is divided at equal intervals.

7.2 Oscillation of a tabular cantilever in liquid
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In this section, we explain a simulation of movement of fluid acardilever at the time the
tabular cantilever is forced to vibrate in liquiihd we also explain the way to find resonance
frequency of a cantilever by simulating repeatedly, varying frequency of forced vibration.
addition, we examine what kind of rétan holds between a shape of cantilever and effective
viscosity by making holes on a cantilevitrshould be noted that viscoelastic contact dynamics
between a cantilever and a sample is not taken into account in this section.

We think a cantilever of a shape illustrated
in Figure 118 Length, width and thickness of
the cantilever is assned to be 400pm ],

100[/mm] and 4[/rm] respectively We vibrate
Figure 118A cantilever without a hole. this cantilever in a liquid of density
200.0[ kg/m® ] and kinematic viscosity

0.253 10°[m?/s]. Here fluid is assumed to be more rarefied than water for easy calculation.

Figure 119is the graph that shows the amplitude change of the caltilever over time when
the cantilever is vibrated on frequency 4.0[kHz] in the liglide graph shows that amplitude
of the cantileveconverges to a value with time.
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'E  4.00E-09
()
e}
3
2
£
< 2.00E-09
0.00E+00 : ‘ ‘
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Figure 119 The amplitude change of the cantilever over time when the cantilever is forced to vibrate in a
liquid.

So we vary frequency of forced vibration of the cantilever and plot convergahess of

the cantilever's amplutid&igure120is this graphThis graph shows that resonance frequency
of the cantilever is about 18.0[kHz].
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Figure 120 The graph on which convergence value of cantilever's amplitude is plotted over frequency of forced
vibration of the cantilever.

In this section we will arguby simulation calculation about a change of effective viscosity
which a cantilever feels from liquid by perforating a cantilever.

Here we assume the following situatioNe attach a
polymer chain on the apex of the cantilever and conduct
AFM experiment wih this polymer chain tip aSigure 121
We want to investigate properties of the polymer chain such
as a modulus of elasticityfSuch experiments aractually
conducted in research in which soft materials are
investigated by AFM.

When such an experiment is crtted, it is expected
that viscous resistance force which the cantilever feels
becomes noise and disturbs the reddéince a cantilever of
small viscous resistance force is need&al.we come to the
Figure 121 A polymer chain is idea that what is necessary is reducing the effectaesity

attached on the apex of the cantileve Which the cantilever feels by making many holes on the
and AFM experiment is conductet cantilever.
with this tip.

The following is the analysis procedure for finding a modulus of viscous resistance force by
simulation of perforated cantilever's oscillation in liquitst, we think the follaving equation
as the equation of motion for a rigid sphere in luquid which is attached to spring.
M= - kz- cRA#+ F,cosmt
k stands for a spring constant, stands for a dimensionless coefficied®, stands for a
radius for a rigid spheref? stands for viscosity of liquid and~,cosut is the external force
term.

Here we introduceQ -value with the following.
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mug;

Q

At this time a solution of the equation of motion for a rigid sphere in an appropriate initial

condition is given by the following.

z= Fo T [(k - mw?)cosut +
(k- Imwz)2+(T°)2

cRAh =

mug

sin ut]

W, in the previous equation stands for resonance angular frequency and the following relation
is thought to be hold.

W_k
° Vm

We can understand from the previous equation that the spring constant is gained from the
resonance angular frequendy. addition the coefficient of viscous resistance force is gained
from Q-value as follows.

CR/]:_“mk

Q

Now we examine the cantilever in the previous sectiemgth, width and thickness of the
cantilever is 400pm], 100[//m] and 4[/mmM] respectivelyWe make one hole, two holes, four

holes and ten holes on the caltilever as illustrateBignre 122, Figure 123 Figure 124 and
Figure 125 respectivelyAnd these cantilevers are oscillated in luquid of density 260/07°]

and kinematic viscosity0.253 10°°[m?/s].

Figure 122 The cantilever with one hole. Figure 123The cantilever with two holes.

0 EEHD

Figure 124 The cantilever with four holes. Figure 125 The caltilever with ten holes.

The five cantilevers illustrated iFigure118 Figure122, Figure123 Figurel24andFigure
125 are vibrated in liquid.Figure 126 is the graph on which the convergence values of
cantilever's amplitude with time is plotted with respect to frequency of forced vibration of the
cantilever.
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Figure 126 The graph on which the convergence values of cantilever's amplitude with time is plotted for the
five kinds of cantilever, varying frequency of cantilever's forced vibration.

Table 11 is obtained by reading resonance angular frequemgyand Q -value from
Figure 126 and calculating the coefficient of viscous resistance fdvtass M is calculated
considering density of the cantilever's material as 2880p°].

Table 11 Mass, spring constants,Q -values and coefficients of viscous resistance force for the five kinds of
cantilever.

The 0 1 2 4 10
numberof
holes
Mikg] 373310° 275310 275310% 275310 275310%
k[N/m] 4.77 3.52 3.52 4.34 2.17
Q 6.78 6.30 6.70 7.89 7.87

CRA [kg/s] 6.223 10°° 493 10° 464310° 438 10° 3.10310°

Spring constant k[N/m]

SO B N W » OO

0 2 4 6 8 10
The numberof holes
Figure 127 Variation of a spring constant to the number of cantilever's holes
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Figure 128 Variation of coefficient of viscous resistance force to the number of cantilever's holes.

It is understood fronfrigure 128that the coefficient of viscous resistance force decreases as
holes increase.

GUI is shown inFigure 129 on which the oscillation of a cantilever which has ten holes is
simulated.

W) iquid.pro — Liquid AFM Simulator l
Fle edt Smuston Display Help
0@ CEE Q nseeees v = > B[Ry
Prefot Edtor
Setup i)
‘tvpe |va\ue
£ Companent
BT e
Position
X 0
y 0
z 1
Rotation
alpha 0
beta 0
gamma 0
Size
w 19.9958
d 10.0058
h 16
Property
density 10
young 2.666666
poisson 0.333333
hamaker 10
ScanArea
w 0.0
d 0.0
h 0.0
DistanceFromsamples 0.8
[ sample cubic.cube
Position
X 0
Z g Now replaying.
Rotation
alpha 0
beta 0 L
gamm: 0
Size
w 09
d 0.9
h 0.2
ety 3

Figure 129GUI on which the vibration of a cantilever which has ten holes is simulated.

7.3 The calculation method of viscoelastic contact dynamics between a cantilever in
liquid and a sample surface

LigAFM provides an option for simulating viscoelastic contact dynamics between a tip and
a sampleThis option is activated by tH&iscoelasticity" button in the "LIEVode setting" tab
which is located in the "ProjectEditor" window on the left of the GQff.is selected by default
in this button And by switching on the button, simulation of viscoelastic contact dynamics can
be caried out.
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A state of viscoelastic contact is examined at a designated point of a sample surface on the
viscoelastic contact dynamics simulation of the LigAHWe method of numeric calculation is
as follows. The equation of motion of a cantilever atite Sokes equation of fluidare
numerically calculated by the difference method while the distance between a tip and a sample
is calculated at each step of tinfée tip is assumed to be in contact with the sample when the

tip reaches a fixed distance.

When te tip slips in the region of JKR theory from the region of Van der Waals force, the
tip is drawn in the inside of the sample with uniform velocity by adhesion force from the sample.
The velocity of the tip in this situation is set up almost similarlyhtypical velocity of a tip

excited by a cantilever.
he region of
ti

tip which slips in
c contact

Motion of a t
scoel as

met hod for investigating vVvi

The simulation is set to be stopped when the tipdedrom the samplélhe file named
delta_tipforce.csv is output as calculation result daisplacements of a tip in the axis and
z -components of force which interacts from a sample to a tip is writed the file.

Three concrete examples of computation are introduced b&lmweach value of properties
and parameters in this simulation is explained in sectién 7

We think the simuléon on which a cantilever with a large spring constant is in contact with
a viscoelastic sample in a vacuuRigure 130 is the graph on which displacements of the tip
and external force to a tip are plottdd.order to display this graph, it is needed to extend the

region - 2.0310° ¢ ¢ 5.0310™ [m], - 1.03107 ¢ F ¢ 0 [N] to the total region of the
graph which is gained from the data of delta_tipforce.€se. curve on the graph is drawn with

time evdution in the direction of tharrows.

—p SS 0 _ :
S . z[m]: Displacement of a tip
-5.00E-10 .00E-10

-2.00E-09 -1.50E-09, -1.00E-09

F [N]: External force to a tip

1 E
1.UULC

Figure 130 The graph on which displacements of a tip and external force applied to a tip is plotted which is
gained from simulating a contact between a cantilever with a large spring constant and a viscoelastic sample in

avacuum.
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Here z is postive in the vertical downward direction, anB is positive in the vertical
upward direction as descriptedhigure131 In the upper graph, the adhesion which is applied
to a tip when a tip is in contact with a sample is about 80~100[rg.value is valid.

Figure 131 The direction of variable Z,

F

ol =& -

AD~“3
gﬁk—

We viewFigure130as follows.First the tip comes
in contact with the sample above the surface and is
pushed into the interior of the samp(@nce the tip is
pushed into a position where adhesion becomes zero,
the tip is in turn pulled back in the direction away from
the sampleCalculation is carried out till the tip leaves
the sample on the simulation.

Height of the position where a tip is in contact with a
sample is descripted as follows.

Here A stands for a Hamaker constark, stands for a spring constant ad stands for a

diameter of a tip.

We think the simulation on which a cantilever with a small spring constant is in contact
with a viscoelastic sample in a vacuufme following is the graph on which displacements of
the tip and external force to a tip are plottedorder to display this graph, it is needed to extend

the region - 1.0310°¢ z2¢ 6.0310",
graph which is gained from the data of delta_tipforce.€he. curve on the graph is drawn with
time evolution in the direction of the arrows.

-10310"¢F ¢0 to the

1
L

- 4.00E-08-

0
AAAAA * ' 0.00E+00 m— 4 [r
-1.00E-09 -6.00E-10 -2.00E-10 2.00E-10 6.00E-10
———————————2.00E-08-

4

F [N]: External fo

total region of the

n]: Displacement of a tip

rce to atip

Figure 132 The graph on which displacements of a tip and external force applied to a tip is plotted which is
gained from simulating a contact between a cantilever with a small spring constant and a viscoelastic sample

in a vacuum.
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On the graph oFigure 132, the slope of the curve at the time the tip slips in the region of
JKR theory from the region of Van der Waals force, is small and almost horizontal b#eause
spring constant of the cantilever is smhdladdition, the process of a tip leaving a sample is not
reproduced in the simulatiomhis is because the spring constant is too small that the tip can not
overcome adhesion and can not leave the sarfipla.spring constant is small, a tip is often
flown to a nearly infinity position in the process that the tip slips out from the region of JKR
theory to the region of Van der Waals force.)

We think the simulation on which a cantilever with a large spring constant is in contact with
a viscoelastic sample in liquitkigure 133is the graph on which displacements of the tip and
external force to a tip are plottdd.order to display this graph, it is needed to extend the region
-20310°¢z¢5.0310", -1.03107 ¢ F ¢ 0 to the total region of the graph which is
gained from the data of delta_tipforce.cEte curve on the graph is drawn with time evolution

in the direction of the red arrowt.is observed that motion of the tip is influenced by fluid in
the proess of contact between the tip and the sample.

0
AAAAAAAA z[m]: Displacement of a tif
-1.50E-08 9E-22, 5.00E-10

-2.00E-09

ooe-o7F [N]: External force to a tip

Figure 133 The graph on which displacements of a tip and external force applied to a tip is plotted which is
gained from simulating a contact between a cantilever with a large spring constant and a viscoelastic sample in
liquid.

7.4 Users guidehow to uselLigAFM

In this section, it is explained how values of property and values of parameters should be set
up when LigAFM is actually used.

First, we explain how to carry out the simulation of section 7 @luich the cantilever with
many holes is vibrated in liquid:he project file actually used in this simulation is shown as
follows.
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<Project>
<Setup headers="type,value">
<Component>
<Tip charge="" radius="0" type="model" free="" angle="32">pyramid
<Position><x>0</x>
<y>0</y>
<z min="0">1</z>
</Position>
<Rotation><alpha min=180" max="180">0</alpha>
<beta min=*180" max="180">0</beta>
<gamma min="180" max="180%0</gamma>
</Rotation>
<Size><w ctrl="label">19.9958192610985</w>
<d ctrl="label">19.9958192610985</d>
<h ctrl="label">16</h>
</Size>
<Property><density unit="a.u.">1.0</density>
<young unit="a.u.">2.666666</young>
<poisson>0.333333</poisson>
<hamaker unit="a.u.">1.0</hamaker>
</Property>
<ScanArea><w min="1000" max="1000">0.0</w>
<d min="-1000" max="1000">0.0</d>
<h min="-1000" max="1000">0.0</h>

</ScanArea>
<DistanceFromSamples unit="nm">0.8</DistanceFromSamples>
<[Tip>
<Sample charge="" type="grid" free="">cubic.cube
<Position><x>0</x>

<y>0</y>
<z min="0">0</z>

</Position>

<Rotation><alpha min=180" max="180">0</alpha>
<beta min=*180" max="180">0</beta>
<gamma min="180" max="180">0</gamma>
</Rotation>
<Size><w ctrl="label">0.9</w>
<d ctrl="label">0.9</d>
<h ctrl="label">0.2</h>
</Size>
<Property><density unit="a.u.">1.0</density>
<young unit="a.u.">2.666666</young>
<poisson>0.333333</poisson>
<hamaker unit="a.u.">1.0</hamaker>
</Property>
</Sample>
</Component>
</Setup>
<LIQ headers="name,value,unit,descriptions">
<fluid>
<material><kviscosity unit="m"2/dlnitgrp="m"2/s">0.25d6</kviscosity>
<density unit="kg/m"3" unitgrp="kg/m”3, g/cm”"3">200.0</density>
<impulse unit="N/ms" unitgrp="N/ms">0.6@6</impulse>
</material>
</fluid>
<bar>
<material><density unit="kgn*3" max="10000.0">2330.0</density>
<young unit="GPa" max="1000.0">130.0</young>
<poisson>0.28</poisson>
</material>
<structure><length unit="um" max="1000.0">400.0</length>
<width unit="um" max"1000.0">100.0</width>
<depth unit="um">4.0</depth>
<angle unit="degree" max="89.9">0.0</angle>
<twist unit="degree" min=89.9" max="89.9">0.0</twist>
<sections>17</sections>
<tip><position unit="um" max="1000.0">400.0</position>
<width unit="um">0.0</width>
<radius unit="nm">1.0</radius>
<[tip>
<spotlight display="false">gosition display="false" unit="um">400.0</position>
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<distance display="false" unit="um">1000.0</distance>

<angle display="false" unit="degree">0.0</angle>
</spotlight>
<body display="false"><section display="false">0.0 1.0 1.0</section>
<section display="false">1.0 1.0 1.0</section>
</body>
<split display="false"><sectivdisplay="false">0.125 0.0 0.1</section>
<section display="false">0.25 0.0 0.1</section>
</split>
<split display="false"><section display="false">0.125 0.2 0.4</section>
<section display="false">0.25 0.2 0.4</section>
</split>
<split display="false"><section display="false">0.375 0.0 0.1</section>
<section display="false">0.50 0.1</section>
</split>
<split display="false"><section display="false">0.375 0.2 0.4</section>
<section display="false">0.5 0.2 0.4</section>
</split>
<split display="false"><section display="false">0.625 0.0 0.1</section>
<section display="false">0.75 0.0 0.1</section>
</split>
<split display="false"><section display="falsé625 0.2 0.4</section>
<section display="false">0.75 0.2 0.4</section>
</split>
<split display="false"><section display="false">0.875 0.0 0.3</section>
<section display="false">0.9375 0.0 0.3</section>
</split>
</structure>
<motion><frequency unit="kHz" max="1000.0">5.0</frequency>
<amplitude unit="nm">5.0</amplitude>
<baseheight unit="um'50</baseheight>
</motion>
</bar>
<sample>
<material>
<point><young unit="GPa" max="10000000000.0">1.0e+05</young>
<damper unit="Ns/um">0.0</damper>
<tension unit="uN">0.0</tension>
<touch unit="nm*1.5</touch>
<detach unit="">1.0</detach>
</point>
</material>
<structure>
<surface display="false">
<section display="false" unit="um">0.0 0.0</section>
<section display="false" unit="um">1.0 0.0</section>
</surface>
</structure>
</sample>
<simulation><resolution display="false" unit="nm">0.1</resolution>
<time><steps_per_cycle max="2048.0">1024</steps_per_cycle>
<cycles_per_resolution step="smooth"#8sles_per_resolution>
</time>
<convergence>
<criterion>0.0</criterion>
</convergence>
</simulation>
<Output>
<Directory ctrl="label">\output
<height where="head" interval="32" displaytype="2&I="label">height.dat</height>
<height_amplitude where="head" interval="32"
ctrl="label">height_amplitude.dat</height_amplitude>
<twist where="head" interval="32" displaytype="2D" ctrl="label">twist.dat</twist>
<tipforce where="head" interval="32" displaytype="2D" ctrl="label">tipforce.dat</tipforce>
<Movie displaytype="movie" ctrl="label">moviel.mvc</Movie>
<bar_motion displaytype="movie" ctrl="label">barmotion.bar</bar_motion>
</Directory>
</Output>
</LIQ>
</Project>

displaytype="2

B!
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The project file descripted as above is created and edited as a text file with the
extension .proThe folder named SampleProjects is prepared in the folder where executable
files of SPM simulator are puthe samples ofhe project files are contained in the foldSa
you may refer to it.

We explain the items of the project considered to be important below.

First a shape of a cantilever is set up by the description below which belongs to the tag
named <bar><structure>.

<body display="false"><section display="false">0.0 1.0 1.0</section>
<section display="false">1.0 1.0 1.0</section>

</body>

<split display="false"><section display="false">0.125 0.0 0.1</section>
<section display="false">0.25 0.0 0.1</section>

</split>

<split display="false"><section display="false">0.125 0.2 0.4</section>
<section display="false">0.25 0.2 0.4</section>

</split>

<split display="false"><section display="false">0.375 0.0 0.1</section>
<section display="false">0.5 0.0 0.1</section>

</split>

<split display="false"><section display="false">0.375 0.2 0.4</section>
<section display="false">0.5 0.2 0.4</section>

</split>

<split display="false"><section display="false">0.625 0.0 0.1</section>
<section display="false">0.75 0.0 0.1</section>

</split>

<split display="false"><section display="false">0.625 0.2 0.4</section>
<section display="false">0.75 0.2 0.4</section>

</split>

<split display="false"><section display="false">0.875 0.0 0.3</section>
<section display="false">0.9375 0.0 0.3</section>

</split>

The shape of the cantilever set up by the description above beconfeglikel 34.
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Figure 134 The shape of the cantilever with ten holes.
The important items descripted in a project file are the following.

Table 12 The important items descripted in a project file in LigAFM.
<LIQ><fluid><material><kviscosity> Kinematic viscosity of the fluid (unit="m"2/s")
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<LIQ><fluid><material><density>

<LIQ><fluid><material><impulse>

<LIQ><bar><material><density>

<LIQ><bar><material><young>

<LlQ><bar><material><poisson>

<LIQ><bar><material><friction>

<LlQ><bar><material>kamaker>

<LIQ><bar><structure><tip><radius>

<LIQ><bar><motion><frequency>

<LIQ><bar><motion><amplitude>

<LIQ><bar><motion><baseheight>

<LIQ><bar><DistanceFromSamples>

<LIQ><sample><material><point><young>
<LIQ><sample><material><point><poisson>

<LIQ><sample><material><point><damper>

<LIQ><sample><material><point><tension>

Density of fluid (unit="kg/m”3")

Impulse offorce that molecules give to the flu
at random (unit="N/ms")

Density of material used for
cantilever (unit="kg/m”3")

making tl

Young's modulus of material used for maki
the cantileverynit="GPa))

Poisson's ratio of material used for making
cantilever (dimensionless)

Coefficient of friction of material used fc

making cantilever (dimensionless)

Hamaker constant of material used for mak
the cantilever (unit="J")

Radius of the tip of the cantilever (unit="nm")

Frequency of the oscillation of the cantiley
with externaforce (unit="kHz")

Amplitude of the oscillation of the cantilev:
with external forceynit="nm")

Distance between the surface of the sample
the center of the cantilever in the initial pgasi
(unit="nm") (To let the tip of the cantileve
touch the surface of the sample, it has to
nearly equal to the amplitude of the oscillati
of the cantilever.)

Put the value which is equal to <baseheig
(unit="nm")

Young's modulus of the sample (unit="GPa")
Poisson's ratio of the sample (dimensionless)

Damping  coefficient of the samp
(unit="Ns/m") (This coefficient is made use of "
generate the damping force, which is linee
dependent upon the velocity.)

Tension between the tip of the cantilever and
sample when they touchr{it="uN")
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<LIQ><sample><mterial><point><touch> Distance between the surface of the sample
the tip of the cantilever in the initial position (
has to be less than zero. Multiply the value
<baseheight> by-{) and put it.) gnit="nm")

<LlQ><sample><material><point><detach Distance between the point where the tip
released from sample and the initial position
the tip of the cantilever ( It has to be less ti
zero. Put the value being equal to the value
<touch>.) @nit="nm")

<LIQ><sample><material><point><hamaker> Hamaker constant of the samplmi¢="J")
<LIQ><sample><material><point><adhesive> The surface tension of the sample (unit="N/m'

<LIQ><simulation><time><max_cycles A period of the cycle of the cantilevel

step="smooth">1.6 oscillation caused by thexternal force during
the whole simulation (dimensionless. A suita
value of this quantity is 1.6 around.)

<LIQ><Output><Directory><delta_tipforce Time evolution of a distance dnforces of

where="head" interval="1" displaytype="1LC attraction and repulsion between the cantilev

ctrl="label">delta_tipforce.csv tip and the sample is output into a fil
"delta_tipforce.csv".

The project file of "In the case of a cantilever dée spring constant in a vacuum™ which
is simulated at the section 7.3.a is the following.

<Project>
<Setup headers="type,value">
<Component>
<Tip charge="" radius="0" type="model" free="" angle="32">pyramid
<Position><x>0</x>
<y>0</y>
<z min="0">0</z>
</Position>
<Rotation><alpha min=180" max="180">0</alpha>
<beta min="180" max="180">0</beta>
<gamma min=180" max="180">0</gamma>
</Rotation>
<Size><w ctrl="label">19.9958192610985</w>
<d ctrl="label">19.9958192610985</d>
<h ctrl="label">16</h>
</Size>
<Property><density unit="a.u.">1.0</density>
<young unit="a.u.">2.666666</young>
<poisson>0.333333</poisson>
<hamaker unit="a.u.">0.0</hamaker>
</Property>
<ScanArea><w min=1000" max="1000">0.0</w>
<d min="-1000" max="1000">0.0</d>
<h min="-1000"max="1000">0.0</h>
</ScanArea>
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<DistanceFromSamples unit="nm">30.0</DistanceFromSamples>
<[Tip>
<Sample charge=
<Position><x>0</x>
<y>0</y>
<z min="0">0</z>
</Position>
<Rotation><alpha min=180" max="180">0</alpha>
<beta min=*180" max="180">0</beta>
<gamma min="180" max="180">0</gamma>
</Rotation>
<Size><w ctrl="label">0.0</w>
<d ctrl="label">0.0</d>
<h ctrl="label">0.0</h>
<[Size>
<Property><density unit="a.u.">1.0</density>
<young unit="a.u.">2.666666</young>
<poisson>0.333333</poisson>
<haméer unit="a.u.">0.0</hamaker>
</Property>
</Sample>
</Component>
</Setup>
<LIQ headers="name,value,unit,descriptions">
<l--
<fluid>
<material><kviscosity unit="m"2/s">0.2586</kviscosity>
<density unit="kg/m”3">200.0</density>
<impulse unit="N/ms">0.0&</impulse>
</material>
</fluid>
>
<bar>
<material><density unit="kg/m”3" unitgrp="kg/m”3" max="10000.0">2200.0</density>
<young unit="GPa" ungrp="GPa,MPa,kPa,Pa" max="1000.0">6000.0</young>
<poisson>0.22</poisson>
<friction>0.</friction>
<hamaker unit="J">5.020</hamaker>
</material>
<structure>4ength unit="um" unitgrp="um,nm" max="1000.0">400</length>
<width unit="um" unitgrp="um,nm" max="1000.0">50</width>
<depth unit="um" unitgrp="um,nm">4</depth>
<angle unit="deg" max="89.9">0.0</angle>
<twist unit="deg" min="89.9" max="89.9">0.0</twist>
<sections max="500">17</sections>
<tip><position unit="um" max="1000.0">400</position>
<width unit="um">0.0</width>
<radius unit="nm">25.0</radius>
<[tip>
<spotlight><position unit="um" max="1000.0">400</position>
<distance unit="um" max="10000.0">1000.0</distance>
<angle unit=tleg">0.0</angle>

type="grid" free="">cubic.cube

</spotlight>
<body><section display="false">0.0 1.0 1.0</section>
<section>1.0 1.0 1.0</section>
</body>
</structure>
<motion><requency unit="kHz" unitgrp="kHz,MHz,Hz">1.0</frequency>
<amplitude unit="nm" unitgrp="nm,um,ang">30.0</amplitude>
<baseheight unit="nm" unitgrp="nm,um,mm,ang">30.0</baseheight>

</motion>
<DistanceFromSamples unit®h" unitgrp="nm,um,ang,mm">30.0</DistanceFromSamples>
</bar>
<sample unit="">
<material>

<point><young unit="GPa" unitgrp="GPa,MPa,kPa,Pa" max="100000.0">76.5</young>
<poisson>0.22</poisson>
<damper unit="Ns/m" unitgrg'Ns/um,Ns/m">0.0</damper>
<tension unit="uN" unitgrp="uN,nN,N">0.0</tension>
<touch unit="nm" unitgrp="um,nm,ang-30.0</touch>
<detach unit="nm"s30.0</detach>
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<hamaker unit="J">5.0680</hamaker
<adhesive unit="N/m">0.4</adhesive>
</point>
</material>
<structure>
<surface display="false">
<section display="false" unit="um">0.0 0.0</section>
<section display="false" unit="um">1.0 0.0</section>
</surface>
</structure>
</sample>
<simulation>
<time><steps_per_cycle max="2048.0">2048</steps_per_cycle>
<max_cycles step="smooth">1.6</max_cycles>
</time>
<convergence>
<criterion min="0.0" max="0.99">0.0</criterion>
</convergence>
</simulation>
<Output>
<Directory ctrl="label">\output
<resonance_curve displaytype="1D" ctrl="label">resonance.csv</resonance_curve>
<height where="head" interval="1" displaytype="1D" ctrl="label">height.csv</height>
<height_amplitude where="head" interval="8" displaytype="1|
ctrl="label">height_amplitude.csv</height_amplitude>
<tipforce where="head" interval="1" displaytype="1D" ctrl="label">tipforce.csv</tipforce>
<bending where="head" inteal="1" displaytype="1D" ctrl="label">bending.csv</bending>
<delta_tipforce where="head" interval="1" displaytype="1D" ctrl="label">delta_tipforce.csv</delta_tipforce>
<Movie interval="8" displaytype="movie" ctrl="label">moviel.mvc</Movie>
<bar_motion interval="8" displaytype="movie" ctrl="label">barmotion.bar</bar_motion>
</Directory>
</Output>
</LIQ>
</Project>

<

It is ruled that parts surrounded by “&land "-->" in the project file is skippedn the
project fileabove, the part of <fluid> is invalidated and simulation in vacuum is carried out.

In addition when you carry out simulation with viscoelastic
contact dynamics, you should switch on the button "viscoelasticity",
shown inFigure135 in the "LIQ-Mode setting" tab which is located
in the "ProjectEditor" window on the left of th GWIThis button is
switched off by default.)

vizcoelasticity

off

& oh

Figure 135fivi scoe
button i AMode
settingo tab.

The project file of "In the case of a cantilever of a small spring constant in a vacuum" which
is simulated at the section 7.3.b is the following.

<Project>
<Setup headers="type,value">
<Component>
<Tip charge="" radius="0" type="model" free="" angle="32">pyramid
<Position><x>0</x>
<y>0</y>
<z min="0">0</z>
</Position>
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<Rotation><alpha min=180" max="180">0</alpha>
<beta min=*180" max="180">0</beta>
<gamma min="180" max="180">0</gamma>
</Rotation>
<Size><w ctrl="label">19.9958192610985</w>
<d ctrl="label">19.9958192610985</d>
<h ctrl="label">16</h>
<[Size>
<Property><density unit="a.u.">1.0</density>
<young unit="a.u.">2.666666</young>
<poisson>0.333333</poissen
<hamaker unit="a.u.">0.0</hamaker>
</Property>
<ScanArea><w min=1000" max="1000">0.0</w>
<d min="-1000" max="1000">0.0</d>
<h min="-1000" max="1000">0.0</h>

</ScanArea>
<DistanceFromSamples unit="nm">30.0</DistanceFromSamples>
<[Tip>
<Sample charge="" type="grid" free="">cubic.cube
<Position><x>0</x>
<y>0</y>
<z min="0">0</z>
</Position>

<Rotation><alpha in="-180" max="180">0</alpha>
<beta min=*180" max="180">0</beta>
<gamma min="180" max="180">0</gamma>
</Rotation>
<Size><w ctrl="label">0.0</w>
<d ctrl="label">0.0</d>
<h ctrl="label">0.0</h>
<[Size>
<Property><density unit="a.u.">1.0</density>
<young unit="a.u.">2.666666</young>
<poisson>0.333333</poisson>
<hamaker unit="a.u.">0.0</hamaker>
</Property>
</Sample>
</Component>
</Setup>
<LIQ headers="name,value,unit,descriptions">
<l--
<fluid>
<material><kviscosity unit="m"2/s">0.2586</kviscosity>
<density unit="kg/m”3">200.0</density>
<impulse unit="N/ms">0.0e5</impulse>
</material>
</fluid>
->
<bar>
<material><density unit="kg/m”3" unitgrp="kg/m”3" max="10000.0">2200.0</density>
<young unit="GPa" unitgrp="GPa,MPa,kPa,Pa" max="1000.0">76.5</young>
<poisson>0.22</poisson>
<friction>0.</friction>
<hamaker unit="J">5.080</hamaker>
</material>
<structure><length unit="um" unitgrp="um,nm" max="1000.0">400</length>
<width unit="um" unitgrp="um,nm" max="1000.0">50</width>
<depth unit="um" unitgrp="um,nm">4</depth>
<angle unit="deg" max="89.9">0.0</angle>
<twist unit="deg" min="89.9" max="89.9">0.0</twist>
<sections max="500">17</sections>
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<tip><position unit="um" max="1000.0">400</position>
<width unit="um">0.0</width>
<radius unit="nm">25.0</radius>
<[tip>
<spotlight><position unit="um" max="1000.0">400</position>
<distance unit="um" max="10000.0">1000.0</distance>
<angle unit="deg">0.0</angle>
</spotlight>
<body><section disply="false">0.0 1.0 1.0</section>
<section>1.0 1.0 1.0</section>
</body>
</structure>
<motion><frequency unit="kHz" unitgrp="kHz,MHz,Hz">1.0</frequency>
<amplitude unit="nm" unitgrp="nm,um,ang38.0</amplitude>
<baseheight unit="nm" unitgrp="nm,um,mm,ang">30.0</baseheight>

</motion>
<DistanceFromSamples unit="nm" unitgrp="nm,um,ang,mm">30.0</DistanceFromSamples>
</bar>
<sample unit="">
<material>

<point><young uit="GPa" unitgrp="GPa,MPa,kPa,Pa" max="100000.0">76.5</young>
<poisson>0.22</poisson>
<damper unit="Ns/m" unitgrp="Ns/um,Ns/m">0.0</damper>
<tension unit="uN" unitgrp="uN,nN,N">0.0</tension>
<touch unit="nm" unitgrp="um,nm,ang-30.0</touch>
<detach unit="nm">30.0</detach>
<hamaker unit="J">5.680</hamaker>
<adhesive unit="N/m">0.4</adhesive>
</point>
</material>
<structure>
<suface display="false"><section display="false" unit="um">0.0 0.0</section>
<section display="false" unit="um">1.0 0.0</section>
</surface>
</structure>
</sample>
<simulation>
<time><steps_per_cyclaax="2048.0">2048</steps_per_cycle>
<max_cycles step="smooth">1.6</max_cycles>
</time>
<convergence>
<criterion min="0.0" max="0.99">0.0</criterion>
</convergence>
</simulation>
<Output>
<Directory ctrl="label">\outpu<resonance_curve displaytype="1D" ctrl="label">resonance.csv</resonance_curve>
<height where="head" interval="1" displaytype="1D" ctrl="label">height.csv</height>
<height_amplitude where="head" interval="8" displaytype="1]
ctrl="label">héght_amplitude.csv</height_amplitude>
<tipforce where="head" interval="1" displaytype="1D" ctrl="label">tipforce.csv</tipforce>
<bending where="head" interval="1" displaytype="1D" ctrl="label">bending.csv</bending>
<delta_tipforce where="head" interval="1" displaytype="1D" ctrl="label">delta_tipforce.csv</delta_tipforce>
<Movie interval="8" displaytype="movie" ctrl="label">moviel.mvc</Movie>
<bar_motion interval="8" displaytype="movie" ctrl="label">baotion.bar</bar_motion>
</Directory>
</Output>
</LIQ>
</Project>
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The project file of "In the case of a cantilever of a large spring constant in liquid" which is
simulatedat the section 7.3.c is the following.

<Project>
<Setup headers="type,value">
<Component>
<Tip charge="" radius="0" type="model" free="" angle="32">pyramid
<Position><x>0</x>
<y>0</y>
<z min="0">0</z>
</Position>
<Rotation><alpha min=180" max="180">0</alpha>
<beta min=*180" max="180">0</beta>
<gamma min="180" max="180">0</gamma>
</Rotation>
<Size><w ctrl="label">19.9958192610985</w>
<d ctrl="label">19.9958192610985</d>
<h ctrl="label">16</h>
<[Size>
<Property><density unit="a.u.">1.0</density>
<young unit="a.u.">2.666666</young>
<poisson>0.333333</poisson>
<hamaker unit="a.u.">0.0</hamaker>
</Property>
<ScanArea><w min=1000" max="1000">0.0</w>
<d min=-1000" max="1000">0.0</d>
<h min=-1000" max="1000">0.0</h>
</ScanArea>
<DistanceFromSamples unit="nm">30.0</DistanceFromSamples>
<[Tip>
<Sample charge="" type="grid" free="">cubic.cube
<Position><x>0</x>
<y>0</y>
<z min="0">0</z>
</Position>
<Rotation><alpha min"-180" max="180">0</alpha>
<beta min=*180" max="180">0</beta>
<gamma min="180" max="180">0</gamma>
</Rotation>
<Size><w ctrl="label">0.0</w>
<d ctrl="label">0.0</d>
<h ctrl="label">0.0</h>
<[Size>
<Property><density unit="a.u.">1.0</density>
<young unit="a.u.">2.666666</young>
<poisson>0.333333</poisson>
<hamaker unit="a.u.">0.0</hamaker>
</Property>
</Sample>
</Component>
</Setup>
<LIQ headers="name,value,unit,descriptions">
<fluid>
<material><kviscosity unit="m"2/s">0.2886</kviscosity>
<density unit="kg/m”3">200.0</density>
<impulse unit="N/ms">0.0&</impulse>
</material>
</fluid>
<bar>
<material><density unit="kg/m”"3" unitgrp="kg/m”3" max="10000.0">2200.0</density>
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<young unit="GPa" unitgrp="GPa,MPa,kPa,Pa" max="1000.0">6000.0</young>
<poisson>0.22</poisson>
<friction>0.</friction>
<hamaker unit="J">5.080</hamaker>
</material>
<structure><length unit="um" unitgrp="um,nm" max="1000.0">400</length>
<width unit="um" unitgrp="um,nm" max="1000.0">50</width>
<depth unit="um" unitgrp="um,nm">4</depth>
<angle unit="deg" max="89.9">0.0</angle>
<twist unit="deg" min="89.9" max="89.9">0.0</twist>
<sections max="500">17</sections>
<tip><position unit="um" max="1000.0">400</position>
<width unit="um">0.0</width>
<radius unit="nm">25.0</radius>
<[tip>
<spotlight><position unit="um" max="1000.0">400</position>
<distance unit="um" max="10000.0">1000.0</distance>
<angle unit="deg">0.0</angle>
</spotlight>
<body><sectiomisplay="false">0.0 1.0 1.0</section>
<section>1.0 1.0 1.0</section>
</body>
</structure>
<motion><frequency unit="kHz" unitgrp="kHz,MHz,Hz">20.0</frequency>
<amplitude unit="nm" unitgrp="nm,um,ang">30.0</amplitude>
<baseheight unit="nm" unitgrp="nm,um,mm,ang">30.0</baseheight>

</motion>
<DistanceFromSamples unit="nm" unitgrp="nm,um,ang,mm">30.0</DistanceFromSamples>
</bar>
<sanple unit="">
<material>

<point><young unit="GPa" unitgrp="GPa,MPa,kPa,Pa" max="100000.0">76.5</young>
<poisson>0.22</poisson>
<damper unit="Ns/m" unitgrp="Ns/um,Ns/m">0.0</damper>
<tension unit="uN" unitgrp="uMN,N">0.0</tension>
<touch unit="nm" unitgrp="um,nm,ang"30.0</touch>
<detach unit="nm"s30.0</detach>
<hamaker unit="J">5.0680</hamaker>
<adhesive unit="N/m">0.4</adhesive>
</point>
</material>
<structure>
<surface display="false"><section display="false" unit="um">0.0 0.0</section>
<section display="false" unit="um">1.0 0.0</section>
</surface>
</structure>
</sample>
<simulation>
<time><steps_per_cycle max="2048.0">1024</steps_per_cycle>
<max_cycles step="smooth">1.6</max_cycles>
</time>
<convergence>
<criterion min="0.0" max="0.99">0.0</criterion>
</convergence>
</simulation>
<Output>
<Directory ctrl="label">\output<resonance_curve displaytype="1D" ctrl="label'>resonance.csv</resonance_curve>
<height where="head" interval="1" displaytype="1D" ctrl="label">height.csv</height>
<height_amplitude where="head" intaiw"8" displaytype="1D"
ctrl="label">height_amplitude.csv</height_amplitude>
<tipforce where="head" interval="1" displaytype="1D" ctrl="label">tipforce.csv</tipforce>
<bending where="head" interval="1" displaytype="1D" ctrl="lab&&nding.csv</bending>
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<delta_tipforce where="head" interval="1" displaytype="1D" ctrl="label">delta_tipforce.csv</delta_tipforce>
<Movie interval="8" displaytype="movie" ctrl="label">moviel.mvc</Movie>
<bar_motion interval="8" displytype="movie" ctrl="label">barmotion.bar</bar_motion>
</Directory>
</Output>
</LIQ>
</Project>
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Chapter 8 Geometry Optimizing AFM I mageSimulator (CG)

8.1 Classical Force Field

We will explain atomic scaled AFM image simulator basedlassical mechanics from the
eighth chapter to the tenth chapt8tructures such as a tip and a substitute which is used for
AFM measurement and a sample which is a measuring object are aggrigates of atoms, so a
value of force applied to a structure ardatmation of a structure can be predicted by taking all
interactions between atoms into accodidr a system for which this simulation is applied, the
model is needed which expresses covalent bonds as proper as possible because atoms of a
structure ofteris covalently bonded such as in a solid surface and in a moléculassical
force field is a model which is constructed for classical mechanical treatment, and various
models about classical force field are developed according to purposes and kiadgeof
structures.

This simulator adopts the MM3 force field model which is developed by Allinger et al.
[Allinger1989]. Geometry optimizing AFM image simulator treats the following nine kinds of
interaction among atoms.

Bond Stretching (the equation (h)the reference [Allinger1989])
Angle Bending (the equation (2) in [Allinger1989])
Torsion (the equation (3) in [Allinger1989])
StretchBend Interaction (the equation (4) in [Allinger1989])
TorsionStretch Interaction (the equation (5) in [Allinger1989])
BendBend Interaction (the equation (6) in [Allinger1989])
Coulomb Interaction (when electric polarization exists.)
Dipole-Dipole Interaction
van der Waals' Interaction (the equation (7) in [Allingerl1989]) based on
Buckingham potential (exf)
The interations from first to sixth of above work among bonded atowis. can choose the
following interaction, which is highly used in classical atomic simulation, instead of van der
Waals's Interaction based on exjpotential.
9'. van der Waals' Interaction basedl@nnardJones 612 potential

OCeoNoOhRWNE

References
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8.2 Geometry optimizing

The interactions listed in the preceding section only depend on the position of Sms.
total potential energyU of a system is described as a functbh=U(r,,r,,2 ,ry)

whose inputs are only atomic coordinatigs} (Here i =1,2 ,N and N is the number of

atoms in the systemit. can be assumed that a structure is deformed to a stable shape instantly if
the temperature of the system is low and time scale of tip's movement is smaller enough than
that of geometry optimizationln other words the atoms are rearranged instantly to the
coorinates which minimizes the total potential ener@gometry optimizing AFM image
simulator treats deformation of a structure based on this assumption, and calculates force
applied to a tip model.
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There are @ame calculation algorithm which finds a minimum of a multivariable function and
a set of inputs which minimize the functiohhe conjugate gradient method is used in this
simulator.An abbreviation of this simulator CG comes from this meth@d.explain otline of
conjugate gradient method below.

Suppose there is a 2mensional spaceWe express a point of the space as
x ={r,,r,,2 ,ry} and assume the enerdy =U(X) of a system as a function on the

space.When we take an arbitrary mi x©, the energy of this poind @ =U(X?) in

general is not a minimum valu8tarting from this point, we search coordinates of the point
which minimize the energyThe procedure may be concieved that minimum points of the
energy along a downward gradient direction of the energy at a preceding point are stepped
repeatedly to reach the minimum point of energy.

X(n) - X(n+1) - X(n) - f(*).DU (X(n))
(9 is the minimizing point ofU ™ =U(x™™ - fBU(x")) with respect to thevalue
f)

This method, which is called gradient descent, is known to be ineffidibatreason is that
the direction of a step is orthogonal to that of the preceding step, so that the direction of a step
often is away from the dirdon for the global minimum of the energy.

In the conjugate gradient method, which improves this weakness, the conjugate direction
vector is made to search the minimizing coordinate in eachiezp.we introduce the method
of PolakRibiere [Polak1971]which we adopt for this simulatowe express the vector of the

search direction fromx™ as h™. And we express gradient descent vectorsx4t as
follows.

g(n) = _ mj(x(n))
It is natural to set the inital valut®® = g@. The vector of the search direction at the next
point X" is decided as follows.
R = gD 4 g
Here the following condition holds.
g(”) _ (g(n+l) ) g(j])) Q}(nﬂ)
g™ &g

The way howto get

(D) = _ my (xD
g =- WXTT)
is that we takex™™ as the minimizing point in the following condition.
U(X(n+1)) = U(X(n) + /(n)h(n))
By this method we can search without calculating second order differential coefficients of
U(x) . It is known that when energy function has quadratic form, the minimizing point can be
reached by steps of the space dimension times (3N times in this case) in this method.

It should be noted that some atoms which constitutes a structure need tallz prsitions
on the spacelf all atoms which constitutes a tip model are set at the geometry optimizing
coordinates, the force applied to the tip, which is the sum of the force applied to the atoms of the
tip, becomes zero and the significant informatian not be gained.
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8.3 Calculation of tipsample interaction

After calculating geometry optimizing shape of all the structures witlfixbd position of
the tip using the method of preceding section, the interaction between the tip and the sample is
gained by computing the sum of the force applied to all the atoms which constitutesThestip.
force is assumed to be the force the tigidan this simulatorBased on this assumption, a force
curve can be gained by calculating force while changing the position of the tip along a vertical
direction, and a force map can be gained by calculating force while changing the position of the
tip in the plane parallel to the sample surfakdee force considered in this calculation is force
between two structures, that is, van der Waals' Interaction and Coulomb Interaction (if charge
polarization exists).

8.4 Calculation of an AFM imageusing formula -

Cantilever's motion which drives a tip is not taken into account in this simulator as it is
understood from the explanations up to h8u.there is a simple relation between influence on
the tip's oscillation and a force curve if the tip and tm@e interact only slightly with each
other.Concretely a shift amount of resonance oscillation frequency, that is, difference from a
oscillation frequency with no sample, is described as follows [Sasaki2000].

Df =- Z/I;iA ﬁp F;s(z, + Acosg) cosgdg

Here f, stands for resonance frequency in the case the force applied to the tip ikzero,
stands for a spring constant of the cantilevAr, stands for oscillation amplitude of the tip,
F.s(2) stands for the vertical component of the force applied to the tip aZ theosition of

the tip, z, stands for the-zomponent of the oscillation center amfl stands for a phase of

the oscillatbn. A phase is defined to be zero when the tip is in the top posiidrequency
shift image is calculated by using this formula in this simulator.

References
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8.5 Energydissipation

Energy dissipates by cantilever oscillation in AFM observatibime major causes are
internal friction of the cantilever, friction between the cantilever and surrounding fluid (in the
case of measurement in liquid), deformation of the tiptaadsample and thermal oscillation of
the atoms which constitutes the tip and the sanipie.first two causes are beyond the scope of
the application of the calculation model in this simulatéirst, we consider the energy
dissipation from deformation dahe tip and the sampl&he effect of the thermal oscillation of
the atoms can be taken into account [Gauthier2000] by a molecular dynamics method explained
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in the MD's chapter or by treatment of Brownian motiBnt this effect does not taken into
accoun in this simulator because its dissipation is not so large.

There is a dissipation formula under the condition that the interaction between the tip and
the sample is weak enough as in the case of frequency shift calculisipation energy in
one cydte of the oscillation is as follows [Sasaki2000].

DE = Arjp F.<s(z, + Acosg) sin gdg
The symbols mean the same as in the previous selttisrread from this equation that energy
dissipation become zero when force of tip's certain height is same whether the dchppr

the sample or departs from the sampieother words, hysteresis of the force applied to the tip
is needed for non zero energy dissipation.

References
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8.6 Users guidehow to use CG

We explain how to use CG with an example of frequency shift image calculation of a
pentacene molecul&he calculation procedure is described beldlwe measured frequency
shift image of a pentacene molecule can be reproduced well in this calculation which is first
measured by Gross et al. in 2009.

Table 13 The procedure of calculating a frequency shift image of a pentaceneotecule.
Description Procedure

To execute GUI ol
SPM Simulators
1 To create a nev 1.Click [new] from [File] in Menu bar.
simulation project 2. Enter a project file name you like in the [project file] text bo.
3. Change the directory if needed, tlodiok "OK".

2 To select atip model Rightclick the area ofComponenitin the Project Editor. Ther
click the [add tip] > [file]. The dialog [Import file] will be
displayed. For this time, select "co.txyz".(*1)

3 To select a sampl Rightclick the area ofComponeritin the Project Editor. Ther

model click the [add sample] > [file]. The dialog [Import file] will b
displayed. For this time, select "pentacene_opti.txyz".(*1)

4 To set the initial Enter 9", "-5" and "4.5" in the cell of[x], [y] and [Z]
position of the tip al respectively in th¢Componerit> [Tip] > [Positior.
(-9,-5, 4.5)
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*1

*2

10

11
12

13

To set size of sca Enter "18", "10", "1.1" in the cell diw], [d] and[h] respectively
area of the tip at (18 in the[Component> [Tip] > [ScanAredin the Project Editor.
10, 1.1)

To select the CC 1. Select "CG" and "Calculation" in the box on the top of G
solver respectively.
2. Select the [CG] tab in the project editor.

To select in vacuun SelectiCGoin the[AFMmodq in the Project Editor.
calculation mode
To select the Select "ncAFMConstZ" ifiTip_Contro] > [scanmodEbox. (*2)
NC-AFM frequency
shift calculation mode
as a scan mode
To set the value of th Enter "0.2" in[Tip_Contro] > [delta xy} box in the Project
step size of the tip t« Editor.
0.2 Ang
To set the inpul Setthe parameters (*2) jilip_Contro] > [NC_Mode_Settinpin
parameters of the the Project Editor.
frequency shift 1. Input "10" in [ThetaStepNumber] (The number of partition:
calculation mode the zaxis direction.)
2. Input "0.6" in [TipZamplitude] (Amplitude of tip's oscillatiol
The unit is angstrom.)
3. Input "200" in [SpringConst] (A spring constant of t
cantilever. The unit is N/m.)
4. Input "23.165" in [ResoFreq] (Resonance frequeotythe
cantilever. The unit is kHz.)

To save Click the [File]- [Save] at the menu bar on the top of the windi

To run Click the [Simulation]- [Start] at the menu bar on the top of t
window.(Calculation takes some time to complete.)

To viewthe result 1. Click the [Display}- [Result View] at the menu bar on the ti

of the window.

2. Select "cgafm_frg.csvih the [Result View] window.
There are files of tip and sample model at [dgta the installed directory. For instance,
you instll the simulator at [GProgram File$SpmSimurato¥], the files are al
[C:¥Program  File¢SpmSimulato¥data¥]. The file “co.txyz" and the file
"pentacene_opti.txyz" are directly under the direct
[data¢SampléMol¥CGMDsamplé].
Refer the manual dhis simulator for more information about the parameters for each
mode.
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Chapter 9 Atomic-scale liquid AFM simulator (CG-RISM)

9.1 Reference Interaction Site Model (RISM) theory

In the previous chapter, we discuss how to simulate the-B&8&d fote measurements in
vacuum environments with the solver CG (the Geometry optimizing AFM image simulator
included in the Classical Force Field AFM Simulator). However, the CG can also simulate the
AFM-based measurements in liquid environments. If the sammlethe tip are in liquid, the
interaction between the liquid, the sample and the tip let the free energy of the whole system be
different from that in the vacuum. Then, a derivative of the free enrgy with respect to the
position variable causes the formeting on the tip. To compute variances of the free energy, we
need to derive correlation functions between a pair of atoms, which construct the sample, the tip
and the liquid. To derive the correlation functions, we adopt Reference Interaction Site Model
(RISM) theory. (Strictly speaking, we adopt the -alimensional RISM theory.) In this section,
we explain the RISM theory.

9.2 The RISM equation and the closure relation

First of all, we introduce the Ornsteffernike equation, which gives a relationdsnsity

correlation functions of S i mp Ineand d mankody . Her e,
system of classical point particles. The Ornsi&nnike equation is given by
h(r,ri) = c(r,ri) + pgric(r, ri)7 (riph(ri,ri), é(1)

where h(r,ri) represents the total correlation function between positionsand rj,

c(r,ri) represents the direct correlation function between positionand riand 7 (r)

represents the density at the position The physical meaning of this equation is as follows.
The lefthand side of the equation implies the dendiwsity correlation between two points

and rj. This lefti hand term is equal to a sum of the first term and the second term in the
right-hand side of the equation. The first term in the riggntd side of the equation gives a
contribution induced by the dirct correlation. The aset tern in the righband side of the
eguation gives contributions caused by all of the possible indirect weighted correlations.

In general, shapes of molecules, of which real liquid consists, are more complicated than
those of the simple liquid. Thusyraetimes the Ornsteiiernike equation does not describe the
real liquid properly. For example, we cannot treat the direction of the molecule with the above

OrnsteinZernike equation. However, if we adopt the generalized coordir(@egs$] ), which

include the position and the direction of the molecule, we can deal with the real liquid. Here, we

use the following notation. If we write down the generalized coordin@®s] ) rigidly, the

equation becomes too complex. Thus, wewre a si mpl e symbol Alo inst
coordinates(R,, Q) . Hence, the generalized Ornst&iernike equation is given by

h(L2) = c(1.2) + va Fd3c(L3)h(32).

In the above equation, we put the density outside the integral because we cagr ¢btesice
nearly constant. MoreoveV that is not written with a bold font represents a normalization
constant for the integral with respect to the angular coordinates.
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However, because the above equation is too generaldiifi@ult for us to perform anlyses
with it. Thus, we stop considering the correlation function between the molecules. Alternatively,
we concentrate on the correlation function between atoms that belong to the molecule. We can
relate these correlation fuinens as the following equation:

h, 1) = o> FRLI20(R, +17)d(R, +12 - r)h(L2)

where R, represents the position of the molecule I represents the relative position that
is a vector from the positiorR, to the position of an atona belonging to the molecule

and d(3 ) represents the delta function. Thus, the avobe function implies the following. We

assume that the atorm belonging to the molecule 1 exists at the origin of the coordinates.
Moreover, we assume that the atagn belonging to the molecule 2 exists at the position

Under these assumptions, we average the total atioel function h(1,2) between the
molecules. Then obtained average is equal to the total correlation function for ther point
which is described in the leftand side of the above equation. Because we assume that the
system has the spatial translational symmetry, an argument of the function in tmenidfside

of the above equation is given by the absolute value of

To let the above equation be tractable, we try to rewrite its-hightl siden the other form.
We can rewrite the generaliz€tnsteinZernikeequation according to the perturbation method
as follows:

o ~2
hL2) = c(L2) + va Ad3c(L3)c(32) + %%/8 fd3d4c(13)c(34)c(4,2) +3

Moreover, we assume that the direct correlation function between the molecules is equal to a
sum of all thedirect correlation functions between points where the interaction acts as follows:

cl=acr’-r
a.g

From these equations and the Fourier integral representation of the delta function, with tough
calculations, we obtain

h, {r) = ﬁ ik explk O)|e&L -y &y i,

where

. 1. o y

&, fk) = o e expli(f - 19) &)

and € AK) represents the Fourier transformation @f (r). Symbols described with the

bold font inside [3 ]ag represent matrices. In these matrices, we omit arguments of wave

vectors k . For example,€& represents the matri, Ak) whose row and column are given

by indices @ and g respectively. Thus, the rank of the matices is equal tantimeber of
points, where the interaction acts on, in the liquid. In other words, the rank of the matrices is
equal to the total number of atoms in the molecule of the liquid. Moredverpresents the

unit matrix and} = 71 holds. The above is called the RISM equation, that we have to solve.

However, becauséh, 0

the above equation only. Thus, we introduce the closure relation. Then, we can obtain a solution
from the RISM equation and the closure relation. The Hyper Netted Chain (HNC) closure
relation is oft@ used,

and c, ; are unknown functions, we cannot obtain a solution from
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ha _cxr) = eXp[- bua g(r) + ha g(r) - G, g(r)] -1
where b =1/k;T represents the inverse of the temperature aggr) represents the

potental energy for atom& and g with distancer . Assuming the initial values of
correlation functions, using the RISM equation and the closure relation, we carry out
self-consistent numerical calculations many times uhijl, or c, , converges at a certain

form of the function. Finally, we obtain the correlation functions between the positions where
the interaction acts. [Kovalenko19%9]

Reference:
[Kovalenko1999] A. Kovalenko, S. Tam, and F. Hirata, J. Computhem.20(9), (1999)
928936.

9.3 Equations itiquid environment and variation of the free energy

So far, we consider the liquid composed of only one type of the molecule. However, if we
consider the AFM measurements in liquid environment, the tip and the sample are in the liquid.
Thus, we need to knwv equations that describe a physical system including the liquid. In this
section, we examine a model of the solution in which the densities of the solutes are iinfintely
small and its RISM equation.

If we rewrite the RISM equation for the simple pumguld, which is given in the previous
section, with the Fourier components, we obtain

= BB - ) &) .
Furthermore, we can rewrite this equation as
I = bk + ey

From the discussions given in the previous section, if we treat the phsysstain including the

liquid, we can regard the indices of the matrices correspond to both atoms in the molecules of
the solutes and atoms in the molecules of the solvent. To let the discussion be simple, it is
convenient to deal with small matrices, forample, a matrix of the correlation function
between atoms in the molecule of the solvent, a matrix of the correlation function between an
atom of molecule in the solute and an atom of the molecule in the solvent. (Because we consider
the densities of theotutes to be infinitely small, we do not need to think about a matrix of the
correlation function between atoms in the molecule of the solutes.) Hence, we obtain the RISM
equations as _

B = BV + U8y VIR

and 5

BV = eV + ey VIR

The indices of rowsrad columns of matice§, V and U, correspond to atoms of molecules in the
solvent and the solutes. Because matridésand } are block diagonal and symmetric, we

gave them only one index.

In a similar way, we obtaithe closure relations as
h(r) = expl- buy,(r) + o (r) - ¢ (] - 1
'y (r) = expl- bu;(r) + hy (r) - ¢ ()] - 1.

g g
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We can carry out the simulation in the following manner. At first, from the RISM equations, we
evaluate the correlation functions between atoms in the molecules of the solvent, for example

hV‘;(r), with selfconsistent numerical calculationldext, using results of these calculations,

we evaluate the correlation functions between an atom in the molecules of the solutes and an
atom in the molecules of the solvent, for exambi;‘;(r), with selftconsistent numerical
calculations.

Even if the densities of the solutes are infinitely small, the free energy of the solution is not
equal to that of the pure liquid because of-zero correlation functionshy’; (r) and c;’; (r).

In Reference [Singer1985],farmula for estimating the difference of these free energies for a
single solute is given as follows:

Dm= -4k, Tr, & andrrl v(r) - —[hUV(r)] 41 h“V(r) (r)§ 6(4)

akEu gEv
where r,, represents the number density of the solvent.

Reference:
[Singer1985]S. J. Singer and D. Chandler, MBhys.3 (1985)621.

9.4 Evaluation of the interactive force between the tip and the sample

To apply the RISM method to the physical system of the AFM measurement, we regard a
compound of the tip and the sample as sbkites in the solvent for the RISM method. The
compound of the tip and the sample is the only matter in the solvent, we can assume that the
densities of the solutes are infinitely small as discussed in the previous section.

The interactive force actingnothe tip is equal to a sum of the following two interactive
forces as explained in the previous section. The first one is the interactive force between the tip
and the sample through the vacuum environment. The second one is the interactive force
betweenthe tip and the sample through the liquid environment. However, we cannot estimate
the the interactive force between the tip and the sample through the liquid environment in a
direct manner. Thus, we evaluate the derivative of the free energu given ) Eoqd we
regard it as the interactive force through the liquid environment. Hence, to obtain its derivative,
we evaluate the free energy twice with moving the tip slightly. From the difference of the free
energi es and a di st anc e«alculafe thé klezivativei nurdesicallyno v e me n
[Koga1997].

Reference:
[Kogal997] K. Koga, X. C. Zeng and H. Tanaka, J. CHelnys.106(23),(1997)97819792.

9.5 How to carry out simulation with the RISM method actually

Here, we show an example for introducirgpnhto calculate the foredistance curve. In this
example, we choose a carbon nanotube for the tip and a grapheme sheet for the sample. We let
the tip be close to the sample in pure water and examine thedistaace curve. Using the
RISM method, we casimulsate oscillation of the foratistance curve under the influence of

116



salvation around the grapheme sheet in the water. We can carry out the simulation in the
following way.

Table 14 How to calculate the forcedistance curve with choosing a carbon nanotube for the tip and a
grapheme sheet for the sample and lettinthe tip be close to the sample.

What to do
StartSPM Simulato.
Create a project file.

Choose a model for the tip.

Choose a model for the sample.

Let the initial position of the tig
be (O[angstrom], O[angstrom
13[angstrom]).

Let the scan a&a for the tip be
(O[angstrom], O[angstrom],
10[angstrom]).

Choose the tab for [CG], th
geometry optimizing AFM imagt
simulator, in order to inpu
parameters of (CG).

Let the calculation mode b
[CG-RISM] for liquid
environment.

Chosse [ForceCurve] for the sc
mode.

Let the distance for each step
the movement of the tip b
0.1[angstrom] in the direction c
the zaxis.

Let the movement of the tip fc
scanning in the direction of th
z-axis be onavay.

Save the inpuparameters and th
settings.

Start the simulation.

Display the results of the

simulation.

Procedures

1. Click [File] - [New] on the tool bar.

2. Input a name for the project file as "Project name".
3. Click "OK" button, after change your directory if yt
need.

Making a rightclick on"Component'in the Project Editor
and choosindAdd Tip] - [File], make a doblelick on
"NanotubelOx0-Height12A.txyz" (*1)

Making a rightclick on"Component'in the Project Editor
and choosingAdd Sample]- [File], make a doublelick
on"hopg_a50_20x20.txyz'(*1)

Il nput [ O]
"Component™ "Tip"

for ixo, [ 0]
- "Position"of the Project Editor

Il nput [ 0] for i wo , [ 0]
"Component™ "Tip" - "ScanArea'bf the Project Editor

1. Choose [CG] and [@aulation] from the box for
selecting the simulator.
2. Choose the tab of [CG] in the Project Editor.

Select [CGRISM] for "AFMmode" in the Project Editor

Choose[ForceCurve]for "Tip_Control" - "scanmode'in

theProject Editor (*2)

1. Input [0.0] for"Tip_Control" - "delta_xy" of the Project
Editor.

2. Input [0.1] for"Tip_Control" - "delta_z" of the Project
Editor.

Put[Yes] for "Tip_Control" - "OneWayForceCurveih the
Project Editor

Click [File] - [Save] on the tool bar.

Click [Simulation] - [Start] on the tool bar. (Sometimes,
takes long time for obtaining the results.)

1. Click [Display] - [Result View]on the tool bar.
2. Choose [cgafm_fz.csv] from the box.

The file of molecular structure is stored in a subfolder of the ¥latdnich is a subfolder of thi
installation directory for the SPM Simulator. For example, if thetallation folder is
[C:¥Program File¥SpmSimurato¥, the file of the molecular structure is saved in the subfo

of [C:¥Program File¥$SpmSimulatotdata¥] .

Then, t h €lOx®H el ieg hit NL&

is stored in the faler [dat¥Tip¥], and the fleth o pg _a50 _ 20x20.t xyz
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[datat$SampléSurfac&CGMDsurfac#].

*  To obtain information about required parameters for each scan mode, refer to Section
2 Reference Manual.
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Chapter 10 Molecular Dynamics AFM Image Simulator(MD)

10.1Principle of the molecular dynamics calculation

In Chapter 8, the Geometry Optimizing AFM Image Simulg@®) assumes that the time
scale of the tip motion is much longer than the time scale of the relaxafithe atomic
configuration, sdhat the atomic configurations of tips or samples have transfered in the stable
states fom given initial configuration. On the other handhen the time scale of the tip motion
is short, we had better to calculate the atomic motions of constituentsdratiesl equation of
motion. Such a method is able to take a thermal effect into account. In this chapter, we introduce
the Molecular Dynamics AFM Image Simulator (MD), which has been designed to calculate the

atomic motion according to the classical me¢hans . The modul e solves the
of motion
d*r, H
=F =- —U(r,r,,2 ,ry),

where i =1,...,N andN s the total number of atoms in the system.

You know; there are variousumerical algorithms to solve the ordinary differential equation.
Our simulator is based on the velocity Verlet method, which is widely applied in the classical
molecular dynamics. The velocity Verlet methotlows the difference equation shown below,
andcalculates the time evolution of tipesition and the velocity of each at@nce giverthe
initial positiors and thanitial velocities

2
r(t+h) = ri(t>+hvi<t)+2h—mﬁ<t>,

Vit+h) = v () + - [F+h) +F ),
2m

where his the time step specified by the usEne appropriate value is about 1 fs in case of the
atomic scale simulation. If the time scale is too large, the simulation will break ddwen.
computing procedure of the time evolution is as follows,

It calculatesr, (t + h) forall i.
It then calculatesF, (t + h) for all i according to the giverr, (t + h) .

., ltthen calculatesv, (t + h) forall i.
Those procedures are repeated untédtcheshe desiredtime.

When the molecular dynamics calculation is performed for a molecule like a protein, the
hydrogens in a molecule does not contribute to the result so much even though the hydrogens
have a shorter time scale of motion than ¢ktger atoms. Hence, this module keeps the bond
length constant between hydrogen and the other atoms, so that we can specify a fairly long time
step when solving the equation of motion. We adopted the RATTLE algorithm to solve the
differential equation witltonstraint condition [Andersen1983].

References
[Andersen1983] H. C. Andersen, J. Comprhys.52(1983)24-34.
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10.2Classical atomic force field model

The Molecular Dynamics AFM Image Simulator adopts the MM3 (molecular mechanics
force field) modelas in the Geometry Optimizing AFM Image Simulator. In order to improve
the computing speed, we now consider only five kinds of interactions as follows;

1. Bond stretching interactioficq. (1) in[Allinger1989))
2. Angle bending interaction (Eq. (2) jJAllinger1989)
3. Torsion interaction (Eq. (3) ifAllinger1989))
4. Dipole-dipole interaction
5. van der Waals interaction of the (e&p funcion byBuckingham(Eg. (7) in
[Allinger1989)
The formulae are the same as in the Geometry Optimizing AFM Image Simulator.

References
[Allinger1989]N. L. Allinger, Y. H. Yuh, and JH. Lii, J. Am.Chem. Soc.111(23), (1989) 8551.

10.3Thermal effect

There are seveal algorithms to keep the temperature in typical classical molecular dynamics.
We adopt thehighly simplified velocity rescaling rathod. The velocities are rescaled by

v, (t) - /v,(t) before every time step, where

N
/= \/(N - l)skBTinput a mV.Z .
i=1

Under such a condition, we presume that the temperature will be kept constant.

10.4Forces due to the ipample interaction

The calculation method of the force to the tip is the same as the Geometry Optimizing AFM
Image SimulatorHowever, note that the tip movement is not always synchronized with the
atomic motion from the molecularydamics. Thus, the module supplies the averaged force
during theN;time steps of the time evolution while the tip stays at a certain position;

1 %
<Ftip> = Wt ia:l Ftip,i .

Theforce map and the force curve are also derived from this equation.

In the presenD solver, he tip moves in the same mannethasCG solver. After the time
evolution ofN; steps based on the equation of motion, the whole tip goes up/down with a finite
height. Then the module performs the time evolutioN,aftepsagainat the newtip position. If
we intend to solvalso the tip movement by the equation of motion, we have to perform the
time evolution in consideration of the external force to the tip model. The latter manner will be
shown in the next section.
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10.5Simulation of the AFM ImageTip Dynamics

[The simulator will be equipped with the contents of this section in the future.]

When we consider more realistic tip motion, we should solve the equation of motion with
the external force from the cantilever to the atoms of the tip. The external force from the

cantilever seemsto be a sine curve, written by, sin(2df;t+q,). We a&sume that the
direction of F_, is parallel to the -axis. While taking that force into account, we perform the

simulation until the tip comes back to the initial position. Then, weestimatethe period and
the amplitude f of the tip motion, and we have the frequency siidft = f - f,. We will

obtain the frequency shift AFM image after we calcul@® 6 s o n -dinmeesionalw o
Xy-plane.

Note that the present MD solver can simullie frequency shift AFM image based on the
formulaintroduced in section 8.4.

In the description above, we assutheh at we coul d simul ate Auntil

initial positiono. However, the ti p anmithd el ma y
interaction with the sample. Thus we are notsurevitst can si mul ate fAuntil tF
t o the i niAltarnatively,pt onayigb wedl i e assume that the tip model is never

deformed.

10.6Simulation in liquid

[The simulator will be equipped with the contents of this section in the future.]

When we perform the #iquid simulation based on the molecular dynamics, we put the
solvent constituents such as molecules and ions properly around the tip and the aszamyse,
follow the motion of all the atoms according to the equation of motion. While the simulation, in
general, the periodic boundary conditions are imposed on the boundary of the calculation area,
so that the density of molecules and ions keeps constach a condition implies that the
molecules and the iorexist in the unlimited space periodically. We have to calculate the forces
from the infinite number of atoms scattered in the space, when the long range interaction forces
such as the Coulombiciore and t he van der Wallsé force are
effective algorithm to calculate the interactions from those infinite numbers of atoms if the
periodic boundary conditions are imposed along all the direction, and if the interactigg ener
between two atoms is described as a function of the power of their distance. For ekathple,
the Coulombic force and the London dispersion force satisfy that condition; the former is
propotional to the inverse of the distance, and the lattprapotional to the distance to the
power of minus six. Our module makes the use af afigorithm to calculate the long range
force and is possible to perform theliquid simulation.

The 3DEwald method is known as the effective technique to calcueteCoulombic
potential in the periodic boundary condition. We will take such a technique into consideration in
the futuredevelopment and improvement [Essmann1995].

References
[Essmann1995] U. Essmaehal, J. Chem. Phy4.0319), (1995)8577#8593.
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10.7 Caseexample of MD

[The results of the case examples in this sectienewbtained by theprototype simulator,
while the latest simulator does not reproduce those results. The simulator will be improved to
achieve them in the future.]

As the first example of the molecular dynamics AFM image simulator, we show the force
curve calculation while the AFM tip is compressing a spherical protein called apoféhféin.
show three figures; the snapshots during the simulatiéigure 136, the simulated force curve
in Figure 137, and the force curve measured by the SPM devi€égure 138 The diameter of
the apoferritin is about 13 nm. In the measured force curve, we see repulsive forces below
around 12 nm, the distance between the tip and the substrate. When we continue compressing
by 3 nm (until the distance comes to 9 nm§ see an elastic behavior. Fagt compression
gives discrete relaxations.

In the simulated result, we see the starting of the repulsive force and the next elastic
behavior. But we do not have the discrete relaxations as seen in the measurement. The
difference between the experimentdhe simulation may be caused by that the simulation does
not take into account the effects of the environment in liquid, and that the apoferritin stays on
the substrate steadily the simulation.

We also find the difference between the simulationthedexperiment about the magnitude
of the forces. The simulated force is about ten times larger than the measured force. It is
believed that the difference is caused by the compression speed in the simulation or the
experiment.

Figure 136 The simulation images while the AFM tip is compressing a spherical protein, apoferritin
[Tagami2006}
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Figure 137 The simulated force curve while the AFM tip is compressing a spherical protein, apoferritin

[Tagami2006].

(

Figure 138 The measured force curve while the AFM tip is compressing a spherical protein, apoferritin

[Tagami2006].

References

[Tagami2006] K. Tagami, M. Tsukada, R. Afrin, H. Sekiguchi andlkai, eJ. Surf. Sci.
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As the other examplaye show the simulation of the surface of the muscovite mica in the
water [Tsukada2010]The target isthe single layered muscovite mica surface witie
honeycomb structuréshown inFigure 139, which is composed of aluminum (green), silicon
(yellow) and oxygen (red) atoms. We assumed the potassium atoms are dissolved in the water
as ions.

Figure 139 The single layered muscovite mica surface with the honeycomb structur&reen, yellow and red
spheres stand for aluminum, silicon and oxgen atoms, respectively.

We used the capped (10;-$ihgle walled carbon nanotube as a tipFigure 140, we have
calculated the forces to the tip at each position plaaewhich is perpendicular to the mica
surface. We see the strong repulsive force near the surface. Apart from the surface, we find the
osdllatory behavior of thdorces:Attractive andrepulsiveforces alternately appedt may be
because that the watlsrms the layered structure (hydration structure) near the mica surface.
We havefound an interesting behavior of the force map on the other plane perpendidhiar to
mica surface. The repulsive force is strong at the hollow site on the surface, which is unexpected
behavior according to the atomic configuratidhis may be also due to the hydration structure.

In fact, those features are implied by measurementich indicate the validity of our
simulator.
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Figure 140 Visualization of the force map where we calculated the forces to the tip at each position on two
planes which are perpendicular to the mica surface.

References
[Tsukada2010] M. Tsukada, N. Watanabe, M. Harada and K. Tagami, J. Vac. Sci. Technol. B
28(2010)C4cC1.

10.8Usersguide how touse MD

Here we show the concrete operation procedure to simulate the force cunsysiém
composed of four octane molecules. Let us try the following procedure.

Table 15 The operation procedure to simulate the force curve od system composed of four octane molecules.
Description Procedure

1 Make a projectile. 1. Click [File] A [New] on the menu bar.
2. Type a project name as you like at [Project name] ir
[Create new project] dialog.
3. Change the directory that you would like to save
project, then click [OK].

2  Set the tip model. 1. Right click on the [Component] item. Next, choose [A
Tip] A [File]. Then select
"NanotubelOx0-Height12A.txyz"(*1).
2. Set the initial tip positioelow [Component]A [Tip]
A [Position]: Type"2.8", "2.8", "20" at [x], [y], [zl
respectively.

3 Set the first molecule as the 1. Right click on the [Component] item. Next, choose [A

sample. Sample]A [File]. Then selectoctane.txyz'(*1).

2. Set the positiorbelow [Component]A [Sample] A
[Position]: Type"0", "0", "0" at [X], [y], [z], respectively.
3. Set the direction below [Compone§] [Sample] A
[Rotation]: Type "-90", "-11", "-84" at [alpha], [beta],
[gamma], respectively.
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4  Set the second molecule as 1 1. Right click on the [Component] item. Next, choose [£
sample. Sample]A [File]. Then selectoctane.txyz'(*1).

2. Set the position below [Compone®] [Sample] A
[Position]: Type'5.6", "0", "0" at [X], [y, [z], respectively.
3. Set the direction below [Componer§] [Sample] A
[Rotation]: Type "-90", "-11", "-84" at [alpha], [beta],
[gamma], respectively.

5 Set the third molecule as tr 1. Right click on the [Component] item. Next, choose [A
sample. Sample]A [File]. Then selectoctane.txyz'(*1).

2. Set the position below [Compone®] [Sample] A
[Position]: Type"0", "5.6", "0" at [X], [y], [z], respectively.
3. Set the direction below [Componer§] [Sample] A
[Rotation]: Type "-90", "-11", "-84" at [alpha], [beta],
[gamma], respectively.

6 Set the fourth molecule as tt 1. Right click an the [Component] item. Next, choose [A
sample. Sample]A [File]. Then selectoctane.txyz'(*1).

2. Set the position below [Compone®] [Sample] A

[Position]: Type "5.6", "5.6", "0" at [x], [yl, [zl

respectively.

3. Set the direction below [Componer] [Sample] A

[Rotation]: Type "-90", "-11", "-84" at [alpha], [beta],
[gamma], respectively.

7 Assign the movement flag fo 1. Right click on the [Sample] item below [Componer
each atom. The five bottommo Next, choose [ShoWata] to display the "Data View".
atoms are to be fixed. 2. Type"0" at the [Relax] column at 1, 2, 9, 10 andthl

rows. Otherwise, typ&l". Then, click [OK].
3. Repeat those procedures for each octane.

8 Setthe scan area by 10 [A] dov Set the scan areabelow [Component]A [Tip] A
from the initial tip position. [ScanArea]: Type"0", "0", "10" at [w], [d], [h],

respectively.

9 Select the MD solver. 1. Select [MD] and [Calculatiorih the simulator selectiol

boxes on the toolbar.
2. Click the [MD] tab in the [Project Editor].

10 Select the force curve mode. Select'ForceCurve'below [Tip_Control]A [scanmode].

11 Set g1e interval of the scan area Type"0.5" at [Tip_Control]A [delta_z].
0.5A.

12 Set the time step as 1.0 fs. Type"1.0" at [MD_Setting]A [TimeStep].

13 Set the number of steps at ee Type“"4000"at [MD_Setting]A [StepNumber].
tip position as 4000.

14 Set the temperature at 300 K.  Type"300"at [MD_Setting]A [Temperature].

15 Save the contents. Click [File] A [Save] on the menu bar.

16 Run the simulation. Click [Simulation]A [Start] on the menu bar.

17 View the result of the force curv 1. Click [Display]A [Result View] on the menu bar.
simulation. 2. On the [Resultziew] window, select'MD_Fz.csv"in

the selection box.

*1 There aremolecular structure files below [d&&olders in the installed folder. For instance,

you have installed the simulator at #2rogram FileéSpmSimurato¥], there is the data folde
at [C:¥Program FilesSpmSimulatc¥data4].

The tip data, "Nanotub20x0-Height12A.txyz", ispreparedust below [dat&Tip¥].

The sample data, "octane.txyz"piepared just below [dat&ampl&Mol¥CGMDsurface].
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Chapter 11 Quantum Mechanical SPMSimulator

Quantum Mechanical SPM Simulator calculates electronic states of the system by quantum
mechanics, and computes a tunneling current image, an image of scanning tunneling
spectroscopy, a frequency shift image of AFM and a local contact potdfféatioce image of
KPFM. DFTB (Density Functional based Tight Binding) Method is adopted, and it is suitable
for analyzing a SPM image with an atomic resolutitinis also the feature of Quantum
Mechanical SPM Simulator that it has a function of calcsptin image of scanning tunneling
spectroscopy and a local contact potential difference image of kelvin probe force microscopy.

11.1 Outline of the DFTB method

In quantum mechanics describing an equation which deterngleesronic states of a
system is comparatively easy, but determining electronic states by solving the equation is not

easy.Even if you calculate numerically, a wave functigm(rl,rz,B ,rN) has inputs of N
electron coordinatés} , and has a dimension of 3Mo solve this problem is very difficult.

Various calculation methods for finding electronic states are developed, and density functional
theory is the one of them [29].

Fundamental conception of density functional theoryoidreat electron density(r)

which is only three dimensional instead of a wave funcfiofy,.r,,3 ,r,) Which is 3N

dimensional for describing states of a systadmd physical properties such as energy and so on
are describeds a functional of electron density like E[ff]saves huge calculation cost that a
state of a system is described by electron density only instead of a wave function which has 3N
variables.

A wave function y (rl,rz,S ,rN) can not be reproducedofn density r(r) in general.

But it is ensured by the Hohenbefghn theorems [1] that taking into account densitﬁr)

only is sufficient if you do not take into account an uninteresting "additive constant potential”
and you treat only a ground state of a systéis.also shown [1] that energy E is considered to
be a functional of densityg(r) formally and we can find a ground state by searching the

density r which minimizes E(r) .

But a concrete form ofE(r) is not found.Although E(r) can be described as a
concrete form by approximation methods [2][3], the forms does not have adequate accuracy.

So in order to perform calculation which withstands practical use, we relinquish the original
method of describing a system with densi,n(r) only. And instead we adopt the model that

each of N electrons is described as one particle wave fun{:y"ojﬁr)} and interact with each

other.Then the wave functions satisfy the following KeBham equations [4].
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The KohnSham equations take in the influence of electlattron interaction with a
exchangecorrelation potentialV, . . Average interaction among electron clouds is expressed by
the right side of the equation (4)he procedure of calculation is as followst initial density
ro(r) is given. A effective potentialV,, () is calculated by the equation (1)l wave

functions {)/ j(r)} is calculated by the equation (2pensity r(r) is calculated by the

equation (3)The ground state and the energy of a system are found by rephatistgps until
the energy E converged/_.(r) denotes a potential of external force, and is a Coulomb

potential in this caseE, & denotes exchangmrrelation energy, and is calculated by a

approximation method such asdal Density Approximaton (LDA)The exchangeorrelation
potential v,.(r) is a functional derivative ofE,_ .

Physical properties such as a lattice constant and a bulk modulus are reproduced precisely
[5] with a smallercalculation cost by local density approximation (LDApwever at the same
time LDA has a weakness such as underestimation of a band gap of a semiconductor and
difficulty of Van der Waals force calculatioMethods of improving LDA for these problems
are aveloped, but we omit the explanation.

Wave functions are expanded in an infinite series of bases functions, but wave functions are
described as a linear combination of finite bases on numerical calculatsat.of bases can be
taken as plane waves, gaussian functions, psatmic orbitals and so on, and each set of
bases has their own features.

A pseudeatomic orbital is imitation of an electron orbital of an atom, and is a pseudo wave
function like an sorbital, a porbital or a dorbital for each elemenfthough it is possible to
deal with the all electrons of an atom, chemically unimportant core electrons are often treated as
a potential of an atomic nucleus, so that only the chemically important vad&uateons are
dealt with explicitly. If optimized pseud@tomic orbitals are used as a set of bapesise
calculation can be performed with a small number of bases.

Quantum Mechanical SPM Simulator mainly treats a surface with a periodic boundary

condtion as a sampleSo, pseud@tomic orbitals are replaced with bases which are reflected by
periodical structure.
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{R(r)} denotes pseudatomic orbital of an orbital of an ato@nd we adopt a Bloch sum

b (k,r) = R - R, +1) e(5)

1 X
_a e
JN
as aset of bases which satisfies the condition of Bloch's theorem [6].
U (r +t) =y, (r)

Y (r)=e""u,(r)
N denotes the number of translational vectbidenotes a translation vector of the crystal, "a"
denotes the atom which a psetatomic orbital P belongs to,R, denotes the position

ikfr

vector of an atom "a"K denotes a wave vector and corresponds to electron momentum of a
crystal. An electronic state is expanded Hy(r) =b (0,r), where k =0, when we do not

take states of non zero momentum into accowtien we want to take states of non zero
momentum into account, we take sevekaland expand a stat¢ (K,r) of wave vectork

with b (k,r). In the STM mode and in the STS mode, Quantum Mechanical SPM Simulator

deals with states of a sample which has non zero momentum, but electronic states of a tip is
expanded not with Bloch sums but with pseatiomic orbitals.

Quantum Mechanical SPM Simulator reads translational vectors of sample's periodic
boundary condition not from a sample's structure file but from setting items of a projesofile.
be careful whether a set of input translational vectors is valid or not.

DFTB method (Densityrunctional based TigiBinding method) is a tightinding method
with optimized atomic orbitals based on the density functional theory. The method expands a
state of a system with a pseualmmic orbital or a Bloclsum, based on the density functional
theory. The total energy of a system in the density functinal theory is described as follows [7].
" D 1. ..r(ri) 1.. 2.7,
Eoer =& .0/ 0 |- =tV D) +=pfri——=y ) tE.lr]|+=a =——=>—
oFT 6} vl 2 (1) 2”3| Ir- ”|Lv ) "] 29b|Ra- R,|

Atomic units are usedlyn> denotes a state of one particle in the K&mam equation,f,

6(6)

denotes the occupation number of a stgte), V,, denotes the external force field which

ext
comes from a Coulomb potential of an atomiclaus and of a core electrorr, denotes
electron density, andE,, denotes exchangmrrelation energy.Z, denotes the charge of the

atomic core of an atom "a" at the position of the atomic nucteasis, the sum of the nuclear
charge and the core electron's charge. Temparature effect is taken into consider with occupation

numbers f.. When charger is separeted into the initial charge and the fluctuatien |

r)=ro)+d )

, then the equation (6) can be written as follows.
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In addition, expanding energy at to second order in fluctuation? i, the following holds.
E = a fn<yn|H0|yn>+ E2 + Erep

H =-= ext(r) rfjr | 0( IT +ch[f0]

dZXC | é(?)

e ! 7
z Zrﬂrdrﬁn-r” d(r.)a’(r)\ frl) (r)

- _njrld 0|(rrl)r(i(r) + Exc[ro]' ﬁjrvxc[ro]ro(r) + Eii

E., is called repulsive energy ternid, and E, do not depend od . E, term treats
effects of charge transfer explicitly.

From here, usindight-binding approximation, we expand a wave function with Bloch
sums.

yar= acm b (r)

And usmg the Mulliken population analysis [8], the charge of an atom "a" is assumed to be as
follows.

1.. e
Ja :Ea fna. a (C '”SUCJn CJI’]S]ICIH) "'(8)

n ifa j
Here
S, =(bb;)
and * means complex conjugakifference from initial chargqu is described as follows.
D:Ia =0, - qg
Then the second ternke, of energy in the equation (7) is described as follows [9].
= > a 9.,09.0q,
a,bl atom
_1 €, .éa 41‘ 1‘6 Xot? ,Ra t2- 3 @
Go=g BT mT 7, RO %r (7 ¢Z-12°RE
e C ( a ) ( - ) b~ a) -
R= |Ra - Rb|
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t, =2,
5

Here U, denotes chemical hardness of an atom "a" and can be calculated from ionization
energy and electron affinity [10].

In order to find the minimum of thenergy in equation (7yye use the variational principle
under the condition,

N = pfirr(r)
and we get the following relations.
a Cjn(Hij - enslj): 0

j

Hy =Hj +Hj
5 (9
HiJQ:<bi|HO‘bj> ¢(9)

Hi} :%SU a (gag +gb9)Dqg
9

By using the approximation of considering only thody problem, H, is described as
follows.

éeneutra1 fre¢ atom (I - J)

Al !

Ho =1 (b T+ +V¢]b,)(a, b)
fO, otherwise

Here a and b denotes the atom which the orbital i and j belongs to respecifyelydenotes

neutral fre¢ atom

the potential of atom "a" at the time the charge of "a" is initial charbeand e
denotes the energy of orbital i.

The procedure of finding electronic state is as folldnisial charge {q;’}a is input and the
secular equation of (9) is solveStates ) ,(r) and eigenvaluese, is gained as the solution.
By applying the Fermbirac distribution function to the distribution of the eigenvalugs the
occupation numbersf, and the Fermi levelE; is calculated.The charges are calculated

from the statesy ,(r) and the occupation number, by using the equation (8pnd the

equation (9) is solved from the chargéese steps are repeated until the energy iedhation
(7) convergesWhen the energy converges, the states is what we want td firedprocedure is

called the seltonsistance calculatioft.is not needed to consider the repulsive enekgy, of

the equation (7) during a sedbrsistant calculation because the repulsive energy does not vary
by charge transfeSo it is enough to calculate repulsive energy once and to add the repulsive
energy to the calculated energy after the-seifsistance calculatioihe concrete calculation
method is detailed in [7].

11.2 Simulation of STM
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When the scanning tunneling microscope (STM) is invented in the early 1980s, there are
uncomprehended fundamental issud%ly a surface image with atomic resolution is observed
with a probe whoseurvature radius is larger than 100 angstréto® an image is affected by
the effect of a probe such as material and structlifesbretical simulations have played
important roles in these fundamental iss#eSTM image reflects electronic states of aface
sensitively, and structure of a surface is observed through electronic statéghonlyh atomic
structure of a surface is determined by a STM image in some aasege atom in a surface is
concealed or a bright area does not coincide with an @&toother casesSo in order to
comprehend STM imagesheoretical simulation based on quantum mechanics is especially
important.In this chapter we show examples of STM and explain the simulation method of
STM and STS which is adopted in this simulator.

A surface of a solid is an interface between bulk which forms a crystal and external space.
Because translational symmetry in the vertical direction is lost, various unusual situations occur
so thatunique structure and functions of a surface are yieM#étbn bulk of a crystal is ideally
cut in a plane, the atoms of the surface lose neighboring bonded atoms, that is, dangling bonds
are generated, and the surface become unst8adye atoms of theurface change themselves
by finding chemically stable states, and the atoms are arranged differently from in thEnimulk.
phenomenon is called surface reconstructiBariodic structure of a reconstructed surface
becomes different from that of an idesairface in some caseBhough periodic structure of a
surface can be measured with LEED (l-Bwergy Electron Diffraction), but LEED can not
determine atomic positionSurface reconstruction causes change of electronic states and, as a
result, change of @mical propertiesThere are Si(111Jx7 structure [11] Figure 141) and
Au(100)26x5 structure [12]Kigurel142) as a sample of surface reconstruction.

Figure 142The STM image of Au(100)26x5 [12]
Figure 141The STM image of

(111377 [13]

Electronic states in a crystal is illustrated as band strucmrelectron bound to an atom
has discrete energies in the frame of quantum mechaBidswhen atoms are arranged
periodically like in a crystal or on aurface, energy forms continuous distribution (band

structure).An energy is determined if a wave numbkr is determined, which correnponds to
momentum of the electron in the crystdb we can plot energieE(K) to wave numberk
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(extended zone schem®&ut the following scheme (reduced zone scheme) is often used that the
domain of the energyE(K) is restricted to the first Brillouin zond3, by translatiy energies

with reciprocal vectors where the reciprocal vectors and the first Brillouin zone is calculated
from the periodic boundary conditiomhe first Brillouin zone is three dimensional in a crystal

and two dimensional in a surface plafibe band strcture is characterized by plotting (k)

along some line segments which connects a representative point to another representative point
in the first Brillouin zone as illustrated Figurel43andFigurel144.

6
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Figure 143 The band structure of the single crystal
silicon [15].

Figure 144 The band structure of the surface
silicone [16]. The band structure of surface
reconstructions differ each other.

The calculation model of tunneling current is based on the Bardeen's tunneling theory [17].
We exphin the outline below.We introduce the Hamiltonian of the system as

H =T +V5 +V; in order to find electron transition probability between the tip and the sample
later.Here T denotes a kinetic energy operator avid and V; denotes a potential energy

operator of sample spacé/; and tip spaceWW; each otheMWe assume the localization of the
tip and the sample as follows.

T Hly,) o T+, ) =By ) inT W

Hly . (K))° (T +Ve)ly 5(K)) = Esly 5(K))7 in” W,
Because we can considd to be zero in the domaiVW; and similar in the domain/Vs.
The total domain is described /=W, +W;. It is assumed in the equation (10) that a

6(10)
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voltage is not applied externally and the Fermi level of the tip and of the sample is the same
value E.

When the voltageV is applied to the tip, the potential, the eneagy the Fermi level of the
tip becomeV, (r) =V, (r)- eV, E! =E! - eV and E] =E, - €V respectively ( refer
to Figurel45andFigure146).

The transition probability from a statb/ ,f,(k)> to a state\y N > is described as follows
by the perturbation theory of quantum mechanics (Fermi's golden rule).

P =Ry, = 2 olE] - Ex00)ly T Wy S0

Here H® =T +V,, and \7T =H - H® is the perturbationTransition of a state is ade from
an occupied state to an unoccupied stateusing the the Ferrlirac distribution function,

1

fe (B)= &E- E, §
1+e :

E 7 8

the total amount of the current is described as follows.

|:|T—S_IS—T
:ea

-, Vol(B) ﬁBdk{fEF (E’?’(k))(l' fer (EHT))P' T (EnT)(l' fe, (E;(k)))P}

_2pe .. 1 s T
AL oKlfe, (E500)- 1, 7))

B d(E; - eV- E,?,(k)KV; H-H Sb/;(k»r

_2pe.. 1 . ~ ]
_T%VOKB)QBdeRdE(fEF(E) pr(E"’eV))

6(11)

2 d(ET - eV- E)d(ESK)- E](y TIH- Holy ,?,(k)>‘2

Here B denotes the first Brillouin zoneyol(B) denotes the volume of the first Brillouin
zone, € denotes the elementary charge arkj denotes the Boltzmann constant.
Decomposition of Dirac delta functios applied.
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E’ sample tip

sample A A
£ tip E.
F E.T+eV
E E+eV
EF-eV ET
| | F Figure 146 The conceptual diagram of energy level
I} without applied voltage

Figure 145 The conceptual diagram of energy level
with applied tip's voltage V.

Then the state‘y ,?,(k)> and the statqy;> is expanded by the Bloch sums and by the
pseudeatomic orbital respectively as follows.

y s (k) = & C;.k)b} )

yi)=acho)

Thecontent of the absolute value in the equation (11) is described as follows.
<}/; > = a. (CiT,n) stjm(k)‘]j,i (k)
]
3, =(b"|H - H®|bP(k)) 6(12)
= fr(o” (1)) HbS(k,r) - e, fiir(by (r)) b2 (k,r)

Here "*" means complex conjugate ar®] denotes the eigenvalue of the sample's atomic
orbital.

An energy spectrum of a tip discrete because a tip is approximately treated as an atom
cluster with a small siz8ut because the eigenvalues are widened by the influence of the bulk
part of the tip's root [18, 19], we replace tiaé function for the tip in the equation (11) with the
Lorentzian function of width 1.0 eVPlease refer to the reference [19] for more detailed
derivation of the equation, especially the grounds for using the Lorentzian fun€hen.
resulting equation of thtunneling current is as follows.

_Ta voI(B) Red e‘<y >‘
* fy, GE(f., (B)- fo (E+eV))L(E] - ev- EJa(ES®K)- £)

Here L denotes the Lorentzian of witk.

6(13)

As is shown in the equation (13), the integration which includes the delta function with
respect to engy is needed, and the integration is treated as follows in this s@festake some
k points in the first Brillouin zone and calculate electronic states of the sample at the k points.

At each k point we consider then-th eigenvalue{E,i(k)}kl,B from the bottom as energy

which belongs to them-th band from the bottom¥Ve set the maximum energy and minimum
energy in the m-th band to be the top and the bottom of the band respectivelywea widen
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eigenvaluesE>(K) with the Lorentzian of widthG, so that all two energies are connected

each other in the banBelta function is written as follows.
1 Gm
dES K- E)° ;
p(E-ESK) +G
We force the outer part of thmnd to be zeraThough some part of the density of states is cut
off, the scale does not change seriougljdth G, of Lorentzian, which is calculated for each

band m, is based on the maximum interval of the ordexeergy {E,?,(k)}kl, . as follows.
max{DE, =E,, - E}

There are two major method of measurement in the STM experiment, that is, the method
which scans distance between a tip and a sample as the tunneling current is kept to be constant
and themethod which scans current as distance between a tip and a sample is kept to be
constantQuantum Mechanical SPM Simulator adopts the model of constant height experiment.
Please take notice that psetatomic orbitals by which electronic states are expdnare cut
off on the outside of a distance, so a tunneling current image which you want can not be gained
unless distance between a tip and a sample is adjusted in some cases.

B stm_hsipro — SPM Simulator =10l x|

File Edit Simulation Display Help

H DB Q‘Nuﬁelected =
Project Editor EE%
sewp | DFTB |
type walie
E
E- 2] Tip 5 tipsi4
Pasition
-7
7
1345748

+
ALY

P B I [oFTB =] [Replay =l | 0%

b
oy
i
Rotation
~alpha
beta i

0

624
541
202466

16
16

0
42
il

an
=) hsio0i-dih

£ Rotation
T alpha
L ebeta
-gamma

F;! Siee

g L e e

T

Figure 147 GUI on which calculation of tunneling current is set. The sample is one hydrogen eliminated
surface from a hydrogenterminated Si(001) surface.

We calculate the system illustrated above as an exafpdetip is made of siliag and the

sample is the surface which one hydrogen is eliminated from a hydiegeimated Si(001)
surfaceThe result is shown iRigure148
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Result View
|O:f"UserSf"aSS;"SPMfdftbfcaIcuIatedfcponﬂd,’"ﬂg13_npa|fstm_hsi;"currentc v| Thls iS read that a |al'ge current ﬂOWS in
the hydrogereliminated position.

Figure 148 The tunneling current image of the
calculation of Figure 147.

11.3 Simulation of STS

A tunneling current image of STM reflects not a position of a surface atom but local density
of states (LDoS) of an electron on sh@faceln view of the fact, local density of states directly
under a tip can be measured with the method that we draw a euwle&ge curve by measuring
current in the fixed tip position and differentiate the cufMais is STS (Scanning Tunneling
Spedroscopy).

When a tip is supposed to be one poXit only, the following relation holds from the

equation (12).
)= pprarily ;@) (1N iy Skor

v,
o (7)) (Vs (%) - eV 3(k,x)

The equation (11) is transformed to the following equation.

K ?@RdE(fEF (E)- fe (E+eV))Vy(x)- eV)?

{a’(ET - eV- EJy ] () } rvoKB)ankdE ()- E)y 5k, r)\

(V (x) - eV)’ |;'pIEC"D_DoST(x,E+eV)C"LDoSS(x,E)

E=Eq-eV

LDosT 6] & {d(E; ov- e

%’

LDoSS(x, E) = a| dka(ES®K) - E)y Sk, r)\

I(B) ms

137



Here theFermiDirac distribution function is replaced with a step function for simple argument.

And LDoS' and LD0S® denotes the local density of states of a tip and a sample
respectively(For simple argument we ignorefactor.) The derivation of the above equatin is

as follows.
2
dl o 2%[(\/T (x) - eV)’LDoS' (x, E; )@ DoS%(x, E; - eV)

dv
Er
+2(eV- V;(x) FHPEQDoS' (x,E +eV)QDoS®(x,E)
E=Eg-eV
Er T [7/]
+V,(x)-ev) [ dEC LDoS (x,E +eV)@ADoS®(x, E)u
E=Eg-eV E Q
And further the equation devided by I/V is as follows.
di
dV o o¢-DoS’ (x,E; )AD0oS®(x,E, - eV)+ AV)
r B(V)
v
2 B .
AV)=——— HEQDOS' (x,E+eV)QDoS®(x,E
(ev- Vv, (%) ”j ( ) )
Er T
+ f dEdPOS (y Etev)dDoss(x,E)
E=Eg-eV
Er
BV) == FHE Q.DoS" (x, E +eV)A.DoS*(x, E)
E=Eg-eV

Here A(V) and B(V) is expected to vary slowly to bias voltage Wherefore ((dI/dV)/(1/V))
is often used as an index of local density of states.

In an actual calculation, derivative of current with respect to voltage

d - 2pe®. 1 8 1 sl s 2
dav ~ > ?},vol(B)dekgo/” H-H b/”’(k)»

i
s, dEd(ESK) - E):e = (E+eV)L[E] - ev- E)

+(f (B)- fe (E+eV))(jj—LEG(E; - eV- E)ggj

is calculated, and the spectrum is calculated as a ratio tdBuUWit is knownthat when we
divide a derivative dl/dV by I/V in the tunneling spectroscopy calculation, this calculation
diverges around a band gap because the value I/V is too $maibler to prevent divergence
there is a numerical treatment [20] that the denomiriAfds replaced by the following value.

2
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We think a system illustrated Figure149as a example.
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|
Figure 149GUI on which STS calculation of the Si(0018x1:H surface to the silicon tip is set.

Result View

| GifUsers/ass/SPMAdftbrun/surfscideta 2i001_3x thiourr volt oy

Figure 150The I-V curve.
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Result View
|O:f’UserSf’ass,-’SPM,-’dftb,-’runfsurfsc:i;’sts;"swﬂﬂl_3xlh;’current_spectrocS\ - |

Figure 151 The spectral curve ((dl/dV)/(I/V)).

Figure 150 and Figure 151 arethe calculatiorresuls in the simulator andrigure 152is a
result from a preceding paper.

{b) 3x1:H

\'5. {voln)

Figure 152 The dl/dV curve [18].

It is read that existence of a band dgapeproducedBut the band gap is underestimated
because this calculation is based on the density functional theory.

11.4 Simulation of AFM

It is difficult to calculate Van der Waals force in the frame of the density functional theory.
This Quantum Mednical SPM Simulator calculates force from a sample surface to a tip as the
sum of chemical force based on the DFTB method and Van der Waals force.

In order to calculate chemical force from a sample surface to a tip it is enoogleutate
force applied to an atom of a tip and to take a summation over the total atoms dfad.
applied to each atom "a" of a tip is calculated as a gradient of energy with respect to the positin

vector R, of an atom "a".The gient of energy of equation (7) is calculated as follows.
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Force applied to a tip is calculated as the summation @oaponent of the force applied to an
atom.

aF..

al tip

Quantum MechanicesPM Simulator calculates force applied to a pyramidal tip, a conical
tip, a parabolic tip and a spherical tip by using formulae in the paper [21].

~

- Z&tanz(alz)%_ 1 H  H*> @
Pyramidal — 3,0 (; 7+ H (Z+H)2 (Z+H)38

vdw  _ AH tan’ (3/2)5. 1 H H2 &
Fconlcal %- - 5 38
6 ¢z z+H (z+H) (z+H) 0

Ra1 1 2H @
dew — AH + _

Parabolic — 6 g 2 (Z +H )2 (Z +H ) 8
dew _ AH Ré’ _ 1 2 al 1

Spherical ~ T(} 2 W H QZ Z+H - 08

Here A,, &, H and R denotes the Hamaker constant, the tip apex angle, the height of the
tip and the curvature radius of the tip apex respectifythe spherical tipH = 2R.

Quantum Mechiamial SPM Simulator in AFM calculation mode simulates noncontact
atomic force microscopy (N@FM) in which a tip does not contact with a sample surfate.
noncontact AFM a vibrated tip scans a sample surface and frequency shift or phase shift with
respectad a tip's position is imaged which is caused by the force from a sample surface to a tip.
There are two ways of measuring variation of oscillation, that is;A&¥ which measures the
change in amplitude of the oscilation and MM which measures the changn resonant
frequency of the oscillationt is said that FMAFM is more sensitive than AM\FM and can
perform a measurement with higher resolut@oantum Mechanical SPM Simulator simulates
FM-AFM, which measures the change in frequency, and outgrgg@ency shift image.

Equation of motion about the hight of a tip is as follows.
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m% +2mo(z 393—: +k(z- u, +h)- F(2) =klcoqut)
From this equation, a frequency shidz? is described as follows [22].

_ Ny 2
D= Frs(2(g))codg)dg

Here g, k, h, Fg, n, and a denotes the general friction coefficient, the cantilever

spring constant, the tip length, the-igmple interaction force, the resooarrequency and the
amplitude of the oscillation.

Figure 153 GUI on which simulation of a frequency shift image with a sample of hydrogeterminated Si(001)
surface is set.

We calculate a system @ligure 153 as an example of frequency shift image simulation.
The sample is the hydrogéerminated Si(001) surfac&he tip scans surface while oscillating
in the range of the blue cubBhe result is shown iRigure154. It is read that absolute value of
the frequency shift around the position of hydrogen atoms is larger than the others.
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Figure 154 The frequency shift image of hydrogerterminated Si(001) sample surface

11.5 Simulation of KPFM

After the invention of STM by Binning various kinds of scanning microscopy have been
developed as an extention of STKElvin probe force microscopy (KPFM3 one of them and
is useful technique for measuring a distribution of work functions on a surface at microscale, or
more properly, a distribution of local contact potential differedi@imum energy needed to
remove an electron from a surface materiataled a work functionA work function is
strongly influenced not only by a type of the atoms but also by a crystal orientation and by an
absorbed atomBecause KPFM measures not a macroscopic work function but microscopic
distribution of local contactgiential difference, KPFM is key technique for surface science
development that, for example, evaluates properties of semiconductor and evaluates charge
transfer by absorbed metal catalyst.

Figure 155 (a) the AFM image (b) the KPFM image, of Pt evaporatedTiO2 surface [23]. (a) Open (b) Filled,
circles are obtained on the Pt nanostructures.
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